Preserve argument indexes when inlining MIR
We store argument indexes on VarDebugInfo. Unlike the previous method of relying on the variable index to know whether a variable is an argument, this survives MIR inlining.
We also no longer check if var.source_info.scope is the outermost scope. When a function gets inlined, the arguments to the inner function will no longer be in the outermost scope. What we care about though is whether they were in the outermost scope prior to inlining, which we know by whether we assigned an argument index.
Fixes#83217
I considered using `Option<NonZeroU16>` instead of `Option<u16>` to store the index. I didn't because `TypeFoldable` isn't implemented for `NonZeroU16` and because it looks like due to padding, it currently wouldn't make any difference. But I indexed from 1 anyway because (a) it'll make it easier if later it becomes worthwhile to use a `NonZeroU16` and because the arguments were previously indexed from 1, so it made for a smaller change.
This is my first PR on rust-lang/rust, so apologies if I've gotten anything not quite right.
Instead of repeating the same logic by walking HIR during metadata encoding.
The only difference is that we are no longer encoding `macro_rules` items, but we never currently need them as a part of this list.
They can be encoded separately if this need ever arises.
`module_reexports` is also un-querified, because I don't see any reasons to make it a query, only overhead.
Split implied and super predicate queries, then allow elaborator to filter only supertraits
Split the `super_predicates_of` query into a new `implied_predicates_of` query. The former now only returns the *real* supertraits of a trait alias, and the latter now returns the implied predicates (which include all of the `where` clauses of the trait alias). The behavior of these queries is identical for regular traits.
Now that the two queries are split, we can add a new filter method to the elaborator, `filter_only_self()`, which can be used in instances that we need only the *supertrait* predicates, such as during the elaboration used in closure signature deduction. This toggles the usage of `super_predicates_of` instead of `implied_predicates_of` during elaboration of a trait predicate.
This supersedes #104745, and fixes the four independent bugs identified in that PR.
Fixes#104719Fixes#106238Fixes#110023Fixes#109514
r? types
Support safe transmute in new solver
Basically copies the same implementation as the old solver, but instead of looking for param types, we look for type or const placeholders.
We store argument indexes on VarDebugInfo. Unlike the previous method of
relying on the variable index to know whether a variable is an argument,
this survives MIR inlining.
We also no longer check if var.source_info.scope is the outermost scope.
When a function gets inlined, the arguments to the inner function will
no longer be in the outermost scope. What we care about though is
whether they were in the outermost scope prior to inlining, which we
know by whether we assigned an argument index.
rustc_middle: Document which exactly `DefId`s don't have `DefKind`s
I don't currently have time to investigate when and how to create these missing HIR nodes, but if someone else could do that it would be great.
resolve: Preserve reexport chains in `ModChild`ren
This may be potentially useful for
- avoiding uses of `hir::ItemKind::Use` (which usually lead to correctness issues)
- preserving documentation comments on all reexports, including those from other crates
- preserving and checking stability/deprecation info on reexports
- all kinds of diagnostics
The second commit then migrates some hacky logic from rustdoc to `module_reexports` to make it simpler and more correct.
Ideally rustdoc should use `module_reexports` immediately at the top level, so `hir::ItemKind::Use`s are never used.
The second commit also fixes issues with https://github.com/rust-lang/rust/pull/109330 and therefore
Fixes https://github.com/rust-lang/rust/issues/109631
Fixes https://github.com/rust-lang/rust/issues/109614
Fixes https://github.com/rust-lang/rust/issues/109424
Add ability to transmute (somewhat) with generic consts in arrays
Previously if the expression contained generic consts and did not have a directly equivalent type, transmuting the type in this way was forbidden, despite the two sizes being identical. Instead, we should be able to lazily tell if the two consts are identical, and if so allow them to be transmuted.
This is done by normalizing the forms of expressions into sorted order of multiplied terms, which is not generic over all expressions, but should handle most cases.
This allows for some _basic_ transmutations between types that are equivalent in size without requiring additional stack space at runtime.
I only see one other location at which `SizeSkeleton` is being used, and it checks for equality so this shouldn't affect anywhere else that I can tell.
See [this Stackoverflow post](https://stackoverflow.com/questions/73085012/transmute-nested-const-generic-array-rust) for what was previously necessary to convert between types. This PR makes converting nested `T -> [T; 1]` transmutes possible, and `[uB*2; N] -> [uB; N * 2]` possible as well.
I'm not sure whether this is something that would be wanted, and if it is it definitely should not be insta-stable, so I'd add a feature gate.
This may be potentially useful for
- avoiding uses of `hir::ItemKind::Use`
- preserving documentation comments on all reexports
- preserving and checking stability/deprecation info on reexports
- all kinds of diagnostics
Refactor unwind in MIR
This makes unwinding from current `Option<BasicBlock>` into
```rust
enum UnwindAction {
Continue,
Cleanup(BasicBlock),
Unreachable,
Terminate,
}
```
cc `@JakobDegen` `@RalfJung` `@Amanieu`
Rollup of 7 pull requests
Successful merges:
- #109395 (Fix issue when there are multiple candidates for edit_distance_with_substrings)
- #109755 (Implement support for `GeneratorWitnessMIR` in new solver)
- #109782 (Don't leave a comma at the start of argument list when removing arguments)
- #109977 (rustdoc: avoid including line numbers in Google SERP snippets)
- #109980 (Derive String's PartialEq implementation)
- #109984 (Remove f32 & f64 from MemDecoder/MemEncoder)
- #110004 (add `dont_check_failure_status` option in the compiler test)
Failed merges:
r? `@ghost`
`@rustbot` modify labels: rollup
Remove f32 & f64 from MemDecoder/MemEncoder
r? ```@Nilstrieb```
since they said (maybe joked) on discord that it's a bug if the compiler uses f32 anywhere 🙃
Check pattern refutability on THIR
The current `check_match` query is based on HIR, but partially re-lowers HIR into THIR.
This PR proposed to use the results of the `thir_body` query to check matches, instead of re-building THIR.
Most of the diagnostic changes are spans getting shorter, or commas/semicolons not getting removed.
This PR degrades the diagnostic for confusing constants in patterns (`let A = foo()` where `A` resolves to a `const A` somewhere): it does not point ot the definition of `const A` any more.
Unify terminology used in unwind action and terminator, and reflect
the fact that a nounwind panic is triggered instead of an immediate
abort is triggered for this terminator.
Tweak debug outputs to make debugging new solver easier
1. Move the fields that are "most important" (I know this is subjective) to the beginning of the structs.
For goals, I typically care more about the predicate than the param-env (which is significantly longer in debug output).
For canonicalized things, I typically care more about what is *being* canonicalized.
For a canonical response, I typically care about the response -- or at least, it's typically useful to put it first since it's short and affects the whether the solver recurses or not...
2. Add some more debug and instrument calls to functions to add more structure to tracing lines.
r? `@oli-obk` or `@BoxyUwU` (since I think `@lcnr` is on holiday)
Avoid a few locks
We can use atomics or datastructures tuned for specific access patterns instead of locks. This may be an improvement for parallel rustc, but it's mostly a cleanup making various datastructures only usable in the way they are used right now (append data, never mutate), instead of having a general purpose lock.
Move a const-prop-lint specific hack from mir interpret to const-prop-lint and make it fallible
fixes#109743
This hack didn't need to live in the mir interpreter. For const-prop-lint it is entirely correct to avoid doing any const prop if normalization fails at this stage. Most likely we couldn't const propagate anything anyway, and if revealing was needed (so opaque types were involved), we wouldn't want to be too smart and leak the hidden type anyway.
Previously if the expression contained generic consts and did not have a directly equivalent
type, transmuting the type in this way was forbidden, despite the two sizes being identical.
Instead, we should be able to lazily tell if the two consts are identical, and if so allow them
to be transmuted.
Use `&IndexSlice` instead of `&IndexVec` where possible
All the same reasons as for `[T]`: more general, less pointer chasing, and `&mut IndexSlice` emphasizes that it doesn't change *length*.
r? `@ghost`
Insert alignment checks for pointer dereferences when debug assertions are enabled
Closes https://github.com/rust-lang/rust/issues/54915
- [x] Jake tells me this sounds like a place to use `MirPatch`, but I can't figure out how to insert a new basic block with a new terminator in the middle of an existing basic block, using `MirPatch`. (if nobody else backs up this point I'm checking this as "not actually a good idea" because the code looks pretty clean to me after rearranging it a bit)
- [x] Using `CastKind::PointerExposeAddress` is definitely wrong, we don't want to expose. Calling a function to get the pointer address seems quite excessive. ~I'll see if I can add a new `CastKind`.~ `CastKind::Transmute` to the rescue!
- [x] Implement a more helpful panic message like slice bounds checking.
r? `@oli-obk`
Update `ty::VariantDef` to use `IndexVec<FieldIdx, FieldDef>`
And while doing the updates for that, also uses `FieldIdx` in `ProjectionKind::Field` and `TypeckResults::field_indices`.
There's more places that could use it (like `rustc_const_eval` and `LayoutS`), but I tried to keep this PR from exploding to *even more* places.
Part 2/? of https://github.com/rust-lang/compiler-team/issues/606
numeric vars can only be unified with numerical types in deep reject
Don't consider numeric vars (int and float vars) to unify with non-numeric types during deep reject. This helps us reject incompatible impls sooner.
Don't ICE on placeholder consts in deep reject
Since we canonicalize const params into placeholder consts, we need to be able to handle them during deep reject.
r? `@lcnr` (though maybe `@oli-obk` can look at this one too, if he wants 😸)
Fixescompiler-errors/next-solver-hir-issues#10
And while doing the updates for that, also uses `FieldIdx` in `ProjectionKind::Field` and `TypeckResults::field_indices`.
There's more places that could use it (like `rustc_const_eval` and `LayoutS`), but I tried to keep this PR from exploding to *even more* places.
Part 2/? of https://github.com/rust-lang/compiler-team/issues/606
Partial stabilization of `once_cell`
This PR aims to stabilize a portion of the `once_cell` feature:
- `core::cell::OnceCell`
- `std::cell::OnceCell` (re-export of the above)
- `std::sync::OnceLock`
This will leave `LazyCell` and `LazyLock` unstabilized, which have been moved to the `lazy_cell` feature flag.
Tracking issue: https://github.com/rust-lang/rust/issues/74465 (does not fully close, but it may make sense to move to a new issue)
Future steps for separate PRs:
- ~~Add `#[inline]` to many methods~~ #105651
- Update cranelift usage of the `once_cell` crate
- Update rust-analyzer usage of the `once_cell` crate
- Update error messages discussing once_cell
## To be stabilized API summary
```rust
// core::cell (in core/cell/once.rs)
pub struct OnceCell<T> { .. }
impl<T> OnceCell<T> {
pub const fn new() -> OnceCell<T>;
pub fn get(&self) -> Option<&T>;
pub fn get_mut(&mut self) -> Option<&mut T>;
pub fn set(&self, value: T) -> Result<(), T>;
pub fn get_or_init<F>(&self, f: F) -> &T where F: FnOnce() -> T;
pub fn into_inner(self) -> Option<T>;
pub fn take(&mut self) -> Option<T>;
}
impl<T: Clone> Clone for OnceCell<T>;
impl<T: Debug> Debug for OnceCell<T>
impl<T> Default for OnceCell<T>;
impl<T> From<T> for OnceCell<T>;
impl<T: PartialEq> PartialEq for OnceCell<T>;
impl<T: Eq> Eq for OnceCell<T>;
```
```rust
// std::sync (in std/sync/once_lock.rs)
impl<T> OnceLock<T> {
pub const fn new() -> OnceLock<T>;
pub fn get(&self) -> Option<&T>;
pub fn get_mut(&mut self) -> Option<&mut T>;
pub fn set(&self, value: T) -> Result<(), T>;
pub fn get_or_init<F>(&self, f: F) -> &T where F: FnOnce() -> T;
pub fn into_inner(self) -> Option<T>;
pub fn take(&mut self) -> Option<T>;
}
impl<T: Clone> Clone for OnceLock<T>;
impl<T: Debug> Debug for OnceLock<T>;
impl<T> Default for OnceLock<T>;
impl<#[may_dangle] T> Drop for OnceLock<T>;
impl<T> From<T> for OnceLock<T>;
impl<T: PartialEq> PartialEq for OnceLock<T>
impl<T: Eq> Eq for OnceLock<T>;
impl<T: RefUnwindSafe + UnwindSafe> RefUnwindSafe for OnceLock<T>;
unsafe impl<T: Send> Send for OnceLock<T>;
unsafe impl<T: Sync + Send> Sync for OnceLock<T>;
impl<T: UnwindSafe> UnwindSafe for OnceLock<T>;
```
No longer planned as part of this PR, and moved to the `rust_cell_try` feature gate:
```rust
impl<T> OnceCell<T> {
pub fn get_or_try_init<F, E>(&self, f: F) -> Result<&T, E> where F: FnOnce() -> Result<T, E>;
}
impl<T> OnceLock<T> {
pub fn get_or_try_init<F, E>(&self, f: F) -> Result<&T, E> where F: FnOnce() -> Result<T, E>;
}
```
I am new to this process so would appreciate mentorship wherever needed.
Move `mir::Field` → `abi::FieldIdx`
The first PR for https://github.com/rust-lang/compiler-team/issues/606
This is just the move-and-rename, because it's plenty big already. Future PRs will start using `FieldIdx` more broadly, and concomitantly removing `FieldIdx::new`s.
Support TLS access into dylibs on Windows
This allows access to `#[thread_local]` in upstream dylibs on Windows by introducing a MIR shim to return the address of the thread local. Accesses that go into an upstream dylib will call the MIR shim to get the address of it.
`convert_tls_rvalues` is introduced in `rustc_codegen_ssa` which rewrites MIR TLS accesses to dummy calls which are replaced with calls to the MIR shims when the dummy calls are lowered to backend calls.
A new `dll_tls_export` target option enables this behavior with a `false` value which is set for Windows platforms.
This fixes https://github.com/rust-lang/rust/issues/84933.
Make init mask lazy for fully initialized/uninitialized const allocations
There are a few optimization opportunities in the `InitMask` and related const `Allocation`s (e.g. by taking advantage of the fact that it's a bitset that represents initialization, which is often entirely initialized or uninitialized in a single call, or gradually built up, etc).
There's a few overwrites to the same state, multiple writes in a row to the same indices, the RLE scheme for `memcpy` doesn't always compress, etc.
Here, we start with:
- avoiding materializing the bitset's blocks if the allocation is fully initialized/uninitialized
- dealloc blocks when fully overwriting, including when participating in `memcpy`s
- take care of the fixme about allocating blocks of 0s before overwriting them to the expected value
- expanding unit test coverage of the init mask
This should be most visible on benchmarks and crates where const allocations dominate the runtime (like `ctfe-stress-5` of course), but I was especially looking at the worst cases from #93215.
This first change allows the majority of `set_range` calls to stay with a lazy init mask when bootstrapping rustc (not that the init mask is a big part of the process in cpu time or memory usage).
r? `@oli-obk`
I have another in-progress branch where I'll switch the singular initialized/uninitialized value to a watermark, recording the point after which everything is uninitialized. That will take care of cases where full initialization is monotonic and done in multiple steps (e.g. an array of a type without padding), which should then allow the vast majority of const allocations' init masks to stay lazy during bootstrapping (though interestingly I've seen such gradual initialization in both left-to-right and right-to-left directions, and I don't think a single watermark can handle both).
The first PR for https://github.com/rust-lang/compiler-team/issues/606
This is just the move-and-rename, because it's plenty big-and-bitrotty already. Future PRs will start using `FieldIdx` more broadly, and concomitantly removing `FieldIdx::new`s.