This is a standard pattern:
```
MyAnalysis.into_engine(tcx, body).iterate_to_fixpoint()
```
`into_engine` and `iterate_to_fixpoint` are always called in pairs, but
sometimes with a builder-style `pass_name` call between them. But a
builder-style interface is overkill here. This has been bugging me a for
a while.
This commit:
- Merges `Engine::new` and `Engine::iterate_to_fixpoint`. This removes
the need for `Engine` to have fields, leaving it as a trivial type
that the next commit will remove.
- Renames `Analysis::into_engine` as `Analysis::iterate_to_fixpoint`,
gives it an extra argument for the optional pass name, and makes it
call `Engine::iterate_to_fixpoint` instead of `Engine::new`.
This turns the pattern from above into this:
```
MyAnalysis.iterate_to_fixpoint(tcx, body, None)
```
which is shorter at every call site, and there's less plumbing required
to support it.
Continue to get rid of `ty::Const::{try_}eval*`
This PR mostly does:
* Removes all of the `try_eval_*` and `eval_*` helpers from `ty::Const`, and replace their usages with `try_to_*`.
* Remove `ty::Const::eval`.
* Rename `ty::Const::normalize` to `ty::Const::normalize_internal`. This function is still used in the normalization code itself.
* Fix some weirdness around the `TransmuteFrom` goal.
I'm happy to split it out further; for example, I could probably land the first part which removes the helpers, or the changes to codegen which are more obvious than the changes to tools.
r? BoxyUwU
Part of https://github.com/rust-lang/rust/issues/130704
Remove `GenKillAnalysis`
There are two kinds of dataflow analysis in the compiler: `Analysis`, which is the basic kind, and `GenKillAnalysis`, which is a more specialized kind for gen/kill analyses that is intended as an optimization. However, it turns out that `GenKillAnalysis` is actually a pessimization! It's faster (and much simpler) to do all the gen/kill analyses via `Analysis`. This lets us remove `GenKillAnalysis`, and `GenKillSet`, and a few other things, and also merge `AnalysisDomain` into `Analysis`. The PR removes 500 lines of code and improves performance.
r? `@tmiasko`
Use `ThinVec` for PredicateObligation storage
~~I noticed while profiling clippy on a project that a large amount of time is being spent allocating `Vec`s for `PredicateObligation`, and the `Vec`s are often quite small. This is an attempt to optimise this by using SmallVec to avoid heap allocations for these common small Vecs.~~
This PR turns all the `Vec<PredicateObligation>` into a single type alias while avoiding referring to `Vec` around it, then swaps the type over to `ThinVec<PredicateObligation>` and fixes the fallout. This also contains an implementation of `ThinVec::extract_if`, copied from `Vec::extract_if` and currently being upstreamed to https://github.com/Gankra/thin-vec/pull/66.
This leads to a small (0.2-0.7%) performance gain in the latest perf run.
`GenKillAnalysis` has very similar methods to `Analysis`, but the first
two have a notable difference: the second argument is `&mut impl
GenKill<Self::Idx>` instead of `&mut Self::Domain`. But thanks to the
previous commit, this difference is no longer necessary.
stabilize `ci_rustc_if_unchanged_logic` test
Makes `ci_rustc_if_unchanged_logic` test more stable and re-enables it. Previously, it was expecting CI-rustc to be used all the time when there were no changes, which wasn’t always the case. Purpose of this test is making sure we don't use CI-rustc while there are changes in compiler and/or library, but we don't really need to cover cases where CI-rustc is not enabled.
Second commit was pushed for making a change in the compiler tree, so `ci_rustc_if_unchanged_logic` can be tested properly in merge CI.
- fix for divergence
- fix error message
- fix another cranelift test
- fix some cranelift things
- don't set the NORETURN option for naked asm
- fix use of naked_asm! in doc comment
- fix use of naked_asm! in run-make test
- use `span_bug` in unreachable branch
Make opaque types regular HIR nodes
Having opaque types as HIR owner introduces all sorts of complications. This PR proposes to make them regular HIR nodes instead.
I haven't gone through all the test changes yet, so there may be a few surprises.
Many thanks to `@camelid` for the first draft.
Fixes https://github.com/rust-lang/rust/issues/129023Fixes#129099Fixes#125843Fixes#119716Fixes#121422
Stabilize the `map`/`value` methods on `ControlFlow`
And fix the stability attribute on the `pub use` in `core::ops`.
libs-api in https://github.com/rust-lang/rust/issues/75744#issuecomment-2231214910 seemed reasonably happy with naming for these, so let's try for an FCP.
Summary:
```rust
impl<B, C> ControlFlow<B, C> {
pub fn break_value(self) -> Option<B>;
pub fn map_break<T>(self, f: impl FnOnce(B) -> T) -> ControlFlow<T, C>;
pub fn continue_value(self) -> Option<C>;
pub fn map_continue<T>(self, f: impl FnOnce(C) -> T) -> ControlFlow<B, T>;
}
```
Resolves#75744
``@rustbot`` label +needs-fcp +t-libs-api -t-libs
---
Aside, in case it keeps someone else from going down the same dead end: I looked at the `{break,continue}_value` methods and tried to make them `const` as part of this, but that's disallowed because of not having `const Drop`, so put it back to not even unstably-const.
The `regioncx` and `borrow_set` fields can be references instead of
`Rc`. They use the existing `'a` lifetime. This avoids some heap
allocations and is a bit simpler.
Add `File` constructors that return files wrapped with a buffer
In addition to the light convenience, these are intended to raise visibility that buffering is something you should consider when opening a file, since unbuffered I/O is a common performance footgun to Rust newcomers.
ACP: https://github.com/rust-lang/libs-team/issues/446
Tracking Issue: #130804
This changes the remaining span for the cast, because the new `Cast`
category has a higher priority (lower `Ord`) than the old `Coercion`
category, so we no longer report the region error for the "unsizing"
coercion from `*const Trait` to itself.
This commit adds basic support for reborrowing `Pin` types in argument
position. At the moment it only supports reborrowing `Pin<&mut T>` as
`Pin<&mut T>` by inserting a call to `Pin::as_mut()`, and only in
argument position (not as the receiver in a method call).