Label opaque type for 'captures lifetime' error message
Providing more information may help make this somewhat opaque (lol) error message a bit clearer.
Clippy Fix array-size-threshold config deserialization error
Complementary PR to https://github.com/rust-lang/rust/pull/108673 in order to also get this into the **next** beta.
r? ``@Mark-Simulacrum``
Fix another ICE in `point_at_expr_source_of_inferred_type`
Types coming from method probes must only be investigated *structurally*, since they often contain escaping infer variables from generalization and autoderef. We already have a hack in this PR that erases variables from types, so just use that.
Fixes#108664
The note attached to this error is pretty bad:
```
here the type of `primes` is inferred to be `[_]`
```
But that's unrelated to the PR.
---
Side-note: This is a pretty easy to trigger beta regression, so I've nominated it. Alternatively, I'm slightly inclined to remove this code altogether until it can be reformulated to be more accurate and less ICEy.
Deny capturing late-bound non-lifetime param in anon const
Introduce a new AnonConstBoundary so we can detect when we capture a late-bound non-lifetime param with `non_lifetime_binders` enabled.
In the future, we could technically do something like introduce an early-bound parameter on the anon const, and stick the late-bound param in its substs (kinda like how we turn late-bound lifetimes in opaques into early-bound ones). But for now, just deny it so we don't ICE.
Fixes#108191
This commit desugars the drop and replace deriving from an
assignment at MIR build, avoiding the construction of the
DropAndReplace terminator (which will be removed in a followign PR)
In order to retain the same error messages for replaces a new
DesugaringKind::Replace variant is introduced.
Feed queries on impl side for RPITITs when using lower_impl_trait_in_trait_to_assoc_ty
I've added a test for traits that were already working and what I think is probably the last bit of infrastructure work needed.
In following PRs I'm going to start adding things TDD style, tests and code that make it work.
r? `@compiler-errors`
Make `ExprKind` the first field in `thir::Expr`
This makes its `Debug` impl print it first which is useful, as it's the most important part when looking at an expr.
Explain compile-time vs run-time difference in env!() error message
This PR is clarifying error message of `env!()` based on this user question: https://users.rust-lang.org/t/environment-variable-out-dir-is-undefined/90067
It makes it clear that `env!()` is for env variables defined at compile-time. There's special-case help text for common Cargo build script variables.
I've also rearranged the code to avoid allocating error message on the happy path when the env var is defined.
Point error span at Some constructor argument when trait resolution fails
This is a follow up to #108254 and #106477 which extends error span refinement to handle a case which I mistakenly believed was handled in #106477. The goal is to refine the error span depicted below:
```rs
trait Fancy {}
impl <T> Fancy for Option<T> where T: Iterator {}
fn want_fancy<F>(f: F) where F: Fancy {}
fn example() {
want_fancy(Some(5));
// (BEFORE) ^^^^^^^ `{integer}` is not an iterator
// (AFTER) ^ `{integer}` is not an iterator
}
```
I had used a (slightly more complex) example as an illustrative example in #108254 , but hadn't actually turned it into a test, because I had (incorrectly) believed at the time it was covered by existing behavior. It turns out that `Some` is slightly "special" in that it resolves differently from the other `enum` constructors I had tried, and therefore this test was actually broken.
I've now updated the tests to include this example, and fixed the code to correctly resolve the `Some` constructor so that the span of the error is reduced.
Revert stabilization of `#![feature(target_feature_11)]`
This reverts #99767 due to the presence of bugs #108645 and #108646.
cc `@joshtriplett`
cc tracking issue #69098
r? `@ghost`
Rollup of 5 pull requests
Successful merges:
- #108516 (Restrict `#[rustc_box]` to `Box::new` calls)
- #108575 (Erase **all** regions when probing for associated types on ambiguity in astconv)
- #108585 (Run compiler test suite in parallel on Fuchsia)
- #108606 (Add test case for mismatched open/close delims)
- #108609 (Highlight whole expression for E0599)
Failed merges:
r? `@ghost`
`@rustbot` modify labels: rollup
Highlight whole expression for E0599
Fixes#108603
This adds a secondary label to highlight the whole expression leading to the error. It also prevents empty labels being recognised as 'unexpected' by compiletest - otherwise, tests with NOTE annotations would pick up empty labels.
`@rustbot` label +A-diagnostics
Restrict `#[rustc_box]` to `Box::new` calls
Currently, `#[rustc_box]` can be applied to any call expression with a single argument. This PR only allows it to be applied to calls to `Box::new`
Add support for QNX Neutrino to standard library
This change:
- adds standard library support for QNX Neutrino (7.1).
- upgrades `libc` to version `0.2.139` which supports QNX Neutrino
`@gh-tr`
⚠️ Backtraces on QNX require https://github.com/rust-lang/backtrace-rs/pull/507 which is not yet merged! (But everything else works without these changes) ⚠️
Tested mainly with a x86_64 virtual machine (see qnx-nto.md) and partially with an aarch64 hardware (some tests fail due to constrained resources).
Merge two different equality specialization traits in `core`
Arrays and slices each had their own version of this, without a matching set of `impl`s.
Merge them into one (still-`pub(crate)`) `cmp::BytewiseEq` trait, so we can stop doing all these things twice.
And that means that the `[T]::eq` → `memcmp` specialization picks up a bunch of types where that previously only worked for arrays, so examples like <https://rust.godbolt.org/z/KjsG8MGGT> will use it now instead of emitting loops.
r? the8472
Rollup of 7 pull requests
Successful merges:
- #108143 (rustdoc: search by macro when query ends with `!`)
- #108394 (Make `x doc --open` work on every book)
- #108427 (Recover from for-else and while-else)
- #108462 (Fix `VecDeque::append` capacity overflow for ZSTs)
- #108568 (Make associated_item_def_ids for traits use an unstable option to also return associated types for RPITITs)
- #108604 (Add regression test for #107280)
- #108605 (Add regression test for #105821)
Failed merges:
r? `@ghost`
`@rustbot` modify labels: rollup
Recover from for-else and while-else
This recovers from attempts at writing for-else or while-else loops, which might help users coming from e.g. Python.
```rs
for _ in 0..0 {
// ...
} else {
// ...
}
```
Combined with trying to store it in a let binding, the current diagnostic can be a bit confusing. It mentions let-else and suggests wrapping the loop in parentheses, which the user probably doesn't want. let-else doesn't make sense for `for` and `while` loops, as they are of type `()` (which already is an irrefutable pattern and doesn't need let-else).
<details>
<summary>Current diagnostic</summary>
```rs
error: right curly brace `}` before `else` in a `let...else` statement not allowed
--> src/main.rs:4:5
|
4 | } else {
| ^
|
help: wrap the expression in parentheses
|
2 ~ let _x = (for _ in 0..0 {
3 |
4 ~ }) else {
|
```
</details>
Some questions:
- Can the wording for the error message be improved? Would "for...else loops are not allowed" fit better?
- Should we be more "conservative" in case we want to support this in the future (i.e. say "for...else loops are **currently** not allowed/supported")?
- Is there a better way than storing a `&'static str` for the loop type? It is used for substituting the placeholder in the locale file (since it can emit either `for...else` or `while...else`). Maybe there is an enum I could use that I couldn't find
Name LLVM anonymous constants by a hash of their contents
This makes the names stable between different versions of a crate unlike the `AllocId` naming, making LLVM IR comparisons with `llvm-diff` more practical.
Add `Option::as_`(`mut_`)`slice`
This adds the following functions:
* `Option<T>::as_slice(&self) -> &[T]`
* `Option<T>::as_mut_slice(&mut self) -> &[T]`
The `as_slice` and `as_mut_slice_mut` functions benefit from an optimization that makes them completely branch-free. ~~Unfortunately, this optimization is not available on by-value Options, therefore the `into_slice` implementations use the plain `match` + `slice::from_ref` approach.~~
Note that the optimization's soundness hinges on the fact that either the niche optimization makes the offset of the `Some(_)` contents zero or the mempory layout of `Option<T>` is equal to that of `Option<MaybeUninit<T>>`.
The idea has been discussed on [Zulip](https://rust-lang.zulipchat.com/#narrow/stream/219381-t-libs/topic/Option.3A.3Aas_slice). Notably the idea for the `as_slice_mut` and `into_slice´ methods came from `@cuviper` and `@Sp00ph` hardened the optimization against niche-optimized Options.
The [rust playground](https://play.rust-lang.org/?version=nightly&mode=release&edition=2021&gist=74f8e4239a19f454c183aaf7b4a969e0) shows that the generated assembly of the optimized method is basically only a copy while the naive method generates code containing a `test dx, dx` on x86_64.
---
EDIT from reviewer: ACP is https://github.com/rust-lang/libs-team/issues/150
Only look for param in item's generics if it actually comes from generics
Record whether a `hir::GenericParam` comes from an item's generics, or from a `for<...>` binder. Then, only look for the param in `object_lifetime_default` if it actually comes from the item's generics.
Fixes#108177
This adds the following functions:
* `Option<T>::as_slice(&self) -> &[T]`
* `Option<T>::as_slice_mut(&mut self) -> &[T]`
The `as_slice` and `as_slice_mut` functions benefit from an
optimization that makes them completely branch-free.
Note that the optimization's soundness hinges on the fact that either
the niche optimization makes the offset of the `Some(_)` contents zero
or the mempory layout of `Option<T>` is equal to that of
`Option<MaybeUninit<T>>`.
Stabilize `#![feature(target_feature_11)]`
## Stabilization report
### Summary
Allows for safe functions to be marked with `#[target_feature]` attributes.
Functions marked with `#[target_feature]` are generally considered as unsafe functions: they are unsafe to call, cannot be assigned to safe function pointers, and don't implement the `Fn*` traits.
However, calling them from other `#[target_feature]` functions with a superset of features is safe.
```rust
// Demonstration function
#[target_feature(enable = "avx2")]
fn avx2() {}
fn foo() {
// Calling `avx2` here is unsafe, as we must ensure
// that AVX is available first.
unsafe {
avx2();
}
}
#[target_feature(enable = "avx2")]
fn bar() {
// Calling `avx2` here is safe.
avx2();
}
```
### Test cases
Tests for this feature can be found in [`src/test/ui/rfcs/rfc-2396-target_feature-11/`](b67ba9ba20/src/test/ui/rfcs/rfc-2396-target_feature-11/).
### Edge cases
- https://github.com/rust-lang/rust/issues/73631
Closures defined inside functions marked with `#[target_feature]` inherit the target features of their parent function. They can still be assigned to safe function pointers and implement the appropriate `Fn*` traits.
```rust
#[target_feature(enable = "avx2")]
fn qux() {
let my_closure = || avx2(); // this call to `avx2` is safe
let f: fn() = my_closure;
}
```
This means that in order to call a function with `#[target_feature]`, you must show that the target-feature is available while the function executes *and* for as long as whatever may escape from that function lives.
### Documentation
- Reference: https://github.com/rust-lang/reference/pull/1181
---
cc tracking issue #69098
r? `@ghost`
Avoid invoking typeck from borrowck
This PR attempts to reduce direct dependencies between typeck and MIR-related queries. The goal is to have all the information transit either through THIR or through dedicated queries that avoid depending on the whole `TypeckResults`.
In a first commit, we store the type information that MIR building requires into THIR. This avoids edges between mir_built and typeck.
In the second and third commit, we wrap informations around closures (upvars, kind origin and user-provided signature) to avoid borrowck depending on typeck information.
There should be a single remaining borrowck -> typeck edge in the good path, due to inline consts.
Commit some new solver tests
Lazy norm is hard.
`<?0 as Trait>::Assoc = ?0` ... probably should emit an alias-eq goal, but currently we don't do that. Right now it fails with a cyclical ty error.
Also committed a check-pass test that broken when I attempted to fix this (unsuccessfully).
r? types
Move IpAddr, SocketAddr and V4+V6 related types to `core`
Implements RFC https://github.com/rust-lang/rfcs/pull/2832. The RFC has completed FCP with disposition merge, but is not yet merged.
Moves IP types to `core` as specified in the RFC.
The full list of moved types is: `IpAddr`, `Ipv4Addr`, `Ipv6Addr`, `SocketAddr`, `SocketAddrV4`, `SocketAddrV6`, `Ipv6MulticastScope` and `AddrParseError`.
Doing this move was one of the main driving arguments behind #78802.
MIR-Validate StorageLive.
`StorageLive` statements on a local which already has storage is banned by miri.
This check is easy enough, and can detect bugs in MIR opts.
Don't project specializable RPITIT projection
This effective rejects specialization + RPITIT/AFIT (usages of `impl Trait` in traits) because the implementation is significantly complicated over making regular "default" trait method bodies work.
I have another PR that experimentally fixes all this, but the code may not be worth investing in.
Treat `str` as containing `[u8]` for auto trait purposes
Wanted to gauge ``@rust-lang/lang`` and ``@rust-lang/types`` teams' thoughts on treating `str` as "containing" a `[u8]` slice for auto-trait purposes.
``@dtolnay`` brought this up in https://github.com/rust-lang/rust/issues/13231#issuecomment-1399386472 as a blocker for future `str` type librarification, and I think it's both a valid concern and very easy to fix. I'm interested in actually doing that `str` type librarification (#107939), but this probably should be considered in the mean time regardless of that PR.
r? types for the impl, though this definitely needs an FCP.