Add `rustc_fluent_macro` to decouple fluent from `rustc_macros`
Fluent, with all the icu4x it brings in, takes quite some time to compile. `fluent_messages!` is only needed in further downstream rustc crates, but is blocking more upstream crates like `rustc_index`. By splitting it out, we allow `rustc_macros` to be compiled earlier, which speeds up `x check compiler` by about 5 seconds (and even more after the needless dependency on `serde_json` is removed from `rustc_data_structures`).
Encode hashes as bytes, not varint
In a few places, we store hashes as `u64` or `u128` and then apply `derive(Decodable, Encodable)` to the enclosing struct/enum. It is more efficient to encode hashes directly than try to apply some varint encoding. This PR adds two new types `Hash64` and `Hash128` which are produced by `StableHasher` and replace every use of storing a `u64` or `u128` that represents a hash.
Distribution of the byte lengths of leb128 encodings, from `x build --stage 2` with `incremental = true`
Before:
```
( 1) 373418203 (53.7%, 53.7%): 1
( 2) 196240113 (28.2%, 81.9%): 3
( 3) 108157958 (15.6%, 97.5%): 2
( 4) 17213120 ( 2.5%, 99.9%): 4
( 5) 223614 ( 0.0%,100.0%): 9
( 6) 216262 ( 0.0%,100.0%): 10
( 7) 15447 ( 0.0%,100.0%): 5
( 8) 3633 ( 0.0%,100.0%): 19
( 9) 3030 ( 0.0%,100.0%): 8
( 10) 1167 ( 0.0%,100.0%): 18
( 11) 1032 ( 0.0%,100.0%): 7
( 12) 1003 ( 0.0%,100.0%): 6
( 13) 10 ( 0.0%,100.0%): 16
( 14) 10 ( 0.0%,100.0%): 17
( 15) 5 ( 0.0%,100.0%): 12
( 16) 4 ( 0.0%,100.0%): 14
```
After:
```
( 1) 372939136 (53.7%, 53.7%): 1
( 2) 196240140 (28.3%, 82.0%): 3
( 3) 108014969 (15.6%, 97.5%): 2
( 4) 17192375 ( 2.5%,100.0%): 4
( 5) 435 ( 0.0%,100.0%): 5
( 6) 83 ( 0.0%,100.0%): 18
( 7) 79 ( 0.0%,100.0%): 10
( 8) 50 ( 0.0%,100.0%): 9
( 9) 6 ( 0.0%,100.0%): 19
```
The remaining 9 or 10 and 18 or 19 are `u64` and `u128` respectively that have the high bits set. As far as I can tell these are coming primarily from `SwitchTargets`.
Fluent, with all the icu4x it brings in, takes quite some time to
compile. `fluent_messages!` is only needed in further downstream rustc
crates, but is blocking more upstream crates like `rustc_index`. By
splitting it out, we allow `rustc_macros` to be compiled earlier, which
speeds up `x check compiler` by about 5 seconds (and even more after the
needless dependency on `serde_json` is removed from
`rustc_data_structures`).
Add `try_canonicalize` to `rustc_fs_util` and use it over `fs::canonicalize`
This adds `try_canonicalize` which tries to call `fs::canonicalize`, but falls back to `std::path::absolute` if it fails. Existing `canonicalize` calls are replaced with it. `fs::canonicalize` is not guaranteed to work on Windows.
Avoid unnecessary hashing
I noticed some stable hashing being done in a non-incremental build. It turns out that some of this is necessary to compute the crate hash, but some of it is not. Removing the unnecessary hashing is a perf win.
r? `@cjgillot`
This makes it easier to open the messages file while developing on features.
The commit was the result of automatted changes:
for p in compiler/rustc_*; do mv $p/locales/en-US.ftl $p/messages.ftl; rmdir $p/locales; done
for p in compiler/rustc_*; do sed -i "s#\.\./locales/en-US.ftl#../messages.ftl#" $p/src/lib.rs; done
The crate hash is needed:
- if debug assertions are enabled, or
- if incr. comp. is enabled, or
- if metadata is being generated, or
- if `-C instrumentation-coverage` is enabled.
This commit avoids computing the crate hash when these conditions are
all false, such as when doing a release build of a binary crate.
It uses `Option` to store the hashes when needed, rather than
computing them on demand, because some of them are needed in multiple
places and computing them on demand would make compilation slower.
The commit also removes `Owner::hash_without_bodies`. There is no
benefit to pre-computing that one, it can just be done in the normal
fashion.
Instead of loading the Fluent resources for every crate in
`rustc_error_messages`, each crate generates typed identifiers for its
own diagnostics and creates a static which are pulled together in the
`rustc_driver` crate and provided to the diagnostic emitter.
Signed-off-by: David Wood <david.wood@huawei.com>
spastorino noticed some silly expressions like `item_id.def_id.def_id`.
This commit renames several `def_id: OwnerId` fields as `owner_id`, so
those expressions become `item_id.owner_id.def_id`.
`item_id.owner_id.local_def_id` would be even clearer, but the use of
`def_id` for values of type `LocalDefId` is *very* widespread, so I left
that alone.
rename `ImplItemKind::TyAlias` to `ImplItemKind::Type`
The naming of this variant seems inconsistent given that this is not really a "type alias", and the associated type variant for `TraitItemKind` is just called `Type`.
fix a ui test
use `into`
fix clippy ui test
fix a run-make-fulldeps test
implement `IntoQueryParam<DefId>` for `OwnerId`
use `OwnerId` for more queries
change the type of `ParentOwnerIterator::Item` to `(OwnerId, OwnerNode)`
On later stages, the feature is already stable.
Result of running:
rg -l "feature.let_else" compiler/ src/librustdoc/ library/ | xargs sed -s -i "s#\\[feature.let_else#\\[cfg_attr\\(bootstrap, feature\\(let_else\\)#"
Cache DWARF objects alongside object files in work products when those
exist so that DWARF object files are available for thorin in packed mode
in incremental scenarios.
Signed-off-by: David Wood <david.wood@huawei.com>
This simplifies things, but requires making `CacheEncoder` non-generic.
(This was previously merged as commit 4 in #94732 and then was reverted
in #97905 because it caused a perf regression.)
This avoids the name clash with `rustc_serialize::Encoder` (a trait),
and allows lots qualifiers to be removed and imports to be simplified
(e.g. fewer `as` imports).
(This was previously merged as commit 5 in #94732 and then was reverted
in #97905 because of a perf regression caused by commit 4 in #94732.)
This avoids the name clash with `rustc_serialize::Encoder` (a trait),
and allows lots qualifiers to be removed and imports to be simplified
(e.g. fewer `as` imports).
There are two impls of the `Encoder` trait: `opaque::Encoder` and
`opaque::FileEncoder`. The former encodes into memory and is infallible, the
latter writes to file and is fallible.
Currently, standard `Result`/`?`/`unwrap` error handling is used, but this is a
bit verbose and has non-trivial cost, which is annoying given how rare failures
are (especially in the infallible `opaque::Encoder` case).
This commit changes how `Encoder` fallibility is handled. All the `emit_*`
methods are now infallible. `opaque::Encoder` requires no great changes for
this. `opaque::FileEncoder` now implements a delayed error handling strategy.
If a failure occurs, it records this via the `res` field, and all subsequent
encoding operations are skipped if `res` indicates an error has occurred. Once
encoding is complete, the new `finish` method is called, which returns a
`Result`. In other words, there is now a single `Result`-producing method
instead of many of them.
This has very little effect on how any file errors are reported if
`opaque::FileEncoder` has any failures.
Much of this commit is boring mechanical changes, removing `Result` return
values and `?` or `unwrap` from expressions. The more interesting parts are as
follows.
- serialize.rs: The `Encoder` trait gains an `Ok` associated type. The
`into_inner` method is changed into `finish`, which returns
`Result<Vec<u8>, !>`.
- opaque.rs: The `FileEncoder` adopts the delayed error handling
strategy. Its `Ok` type is a `usize`, returning the number of bytes
written, replacing previous uses of `FileEncoder::position`.
- Various methods that take an encoder now consume it, rather than being
passed a mutable reference, e.g. `serialize_query_result_cache`.
Various refactors to the incr comp workproduct handling
This is the result of me looking into adding support for having multiple object files for a single codegen unit to incr comp. This is necessary to support inline assembly in cg_clif without requiring partial linking which is not supported on Windows and seems to fail on macOS for some reason. Cg_clif uses an external assembler to handle inline asm and thus produces one object file with regular functions and one object file containing compiled inline asm for each codegen unit which uses inline asm. Current incr comp can't handle this. This PR doesn't yet add support for this, but it makes it easier to do so.