The affected crates have had plenty of time to update.
By keeping these as lints rather than making them hard errors,
we ensure that downstream crates will still be able to compile,
even if they transitive depend on broken versions of the affected
crates.
This should hopefully discourage anyone from writing any
new code which relies on the backwards-compatibility behavior.
Actually add the feature to the lints ui test
Add tracking issue to the feature declaration
Rename feature gate to non_exhaustive_omitted_patterns_lint
Add more omitted_patterns lint feature gate
Add `deref_into_dyn_supertrait` lint.
Initial implementation of #89460. Resolves#89190.
Maybe also worth a beta backport if necessary.
r? `@nikomatsakis`
When `cargo report future-incompatibilities` is stabilized
(see #71249), this will cause dependencies that trigger
this lint to be included in the report.
Implement `#[must_not_suspend]`
implements #83310
Some notes on the impl:
1. The code that searches for the attribute on the ADT is basically copied from the `must_use` lint. It's not shared, as the logic did diverge
2. The RFC does specify that the attribute can be placed on fn's (and fn-like objects), like `must_use`. I think this is a direct copy from the `must_use` reference definition. This implementation does NOT support this, as I felt that ADT's (+ `impl Trait` + `dyn Trait`) cover the usecase's people actually want on the RFC, and adding an imp for the fn call case would be significantly harder. The `must_use` impl can do a single check at fn call stmt time, but `must_not_suspend` would need to answer the question: "for some value X with type T, find any fn call that COULD have produced this value". That would require significant changes to `generator_interior.rs`, and I would need mentorship on that. `@eholk` and I are discussing it.
3. `@estebank` do you know a way I can make the user-provided `reason` note pop out? right now it seems quite hidden
Also, I am not sure if we should run perf on this
r? `@nikomatsakis`
This also adjusts the lint docs generation to accept (and ignore) an allow
attribute, rather than expecting the documentation to be immediately followed by
the lint name.
Add linting on non_exhaustive structs and enum variants
Add ui tests for non_exhaustive reachable lint
Rename to non_exhaustive_omitted_patterns and avoid triggering on if let
Remove `Session.used_attrs` and move logic to `CheckAttrVisitor`
Instead of updating global state to mark attributes as used,
we now explicitly emit a warning when an attribute is used in
an unsupported position. As a side effect, we are to emit more
detailed warning messages (instead of just a generic "unused" message).
`Session.check_name` is removed, since its only purpose was to mark
the attribute as used. All of the callers are modified to use
`Attribute.has_name`
Additionally, `AttributeType::AssumedUsed` is removed - an 'assumed
used' attribute is implemented by simply not performing any checks
in `CheckAttrVisitor` for a particular attribute.
We no longer emit unused attribute warnings for the `#[rustc_dummy]`
attribute - it's an internal attribute used for tests, so it doesn't
mark sense to treat it as 'unused'.
With this commit, a large source of global untracked state is removed.
Instead of updating global state to mark attributes as used,
we now explicitly emit a warning when an attribute is used in
an unsupported position. As a side effect, we are to emit more
detailed warning messages (instead of just a generic "unused" message).
`Session.check_name` is removed, since its only purpose was to mark
the attribute as used. All of the callers are modified to use
`Attribute.has_name`
Additionally, `AttributeType::AssumedUsed` is removed - an 'assumed
used' attribute is implemented by simply not performing any checks
in `CheckAttrVisitor` for a particular attribute.
We no longer emit unused attribute warnings for the `#[rustc_dummy]`
attribute - it's an internal attribute used for tests, so it doesn't
mark sense to treat it as 'unused'.
With this commit, a large source of global untracked state is removed.
Lint against named asm labels
This adds a deny-by-default lint to prevent the use of named labels in inline `asm!`. Without a solution to #81088 about whether the compiler should rewrite named labels or a special syntax for labels, a lint against them should prevent users from writing assembly that could break for internal compiler reasons, such as inlining or anything else that could change the number of actual inline assembly blocks emitted.
This does **not** resolve the issue with rewriting labels, that still needs a decision if the compiler should do any more work to try to make them work.
Move naked function ABI check to its own lint
This check was previously categorized under the lint named
`UNSUPPORTED_NAKED_FUNCTIONS`. That lint is future incompatible and will
be turned into an error in a future release. However, as defined in the
Constrained Naked Functions RFC, this check should only be a warning.
This is because it is possible for a naked function to be implemented in
such a way that it does not break even the undefined ABI. For example, a
`jmp` to a `const`.
Therefore, this patch defines a new lint named
`UNDEFINED_NAKED_FUNCTION_ABI` which contains just this single check.
Unlike `UNSUPPORTED_NAKED_FUNCTIONS`, `UNDEFINED_NAKED_FUNCTION_ABI`
will not be converted to an error in the future.
rust-lang/rfcs#2774rust-lang/rfcs#2972
This check was previously categorized under the lint named
`UNSUPPORTED_NAKED_FUNCTIONS`. That lint is future incompatible and will
be turned into an error in a future release. However, as defined in the
Constrained Naked Functions RFC, this check should only be a warning.
This is because it is possible for a naked function to be implemented in
such a way that it does not break even the undefined ABI. For example, a
`jmp` to a `const`.
Therefore, this patch defines a new lint named
`UNDEFINED_NAKED_FUNCTION_ABI` which contains just this single check.
Unlike `UNSUPPORTED_NAKED_FUNCTIONS`, `UNDEFINED_NAKED_FUNCTION_ABI`
will not be converted to an error in the future.
rust-lang/rfcs#2774rust-lang/rfcs#2972
Allow labeled loops as value expressions for `break`
Fixes#86948. This is currently allowed:
```rust
return 'label: loop { break 'label 42; };
break ('label: loop { break 'label 42; });
break 1 + 'label: loop { break 'label 42; };
break 'outer 'inner: loop { break 'inner 42; };
```
But not this:
```rust
break 'label: loop { break 'label 42; };
```
I have fixed this, so that the above now parses as an unlabeled break with a labeled loop as its value expression.
rfc3052 followup: Remove authors field from Cargo manifests
Since RFC 3052 soft deprecated the authors field, hiding it from
crates.io, docs.rs, and making Cargo not add it by default, and it is
not generally up to date/useful information for contributors, we may as well
remove it from crates in this repo.
Since RFC 3052 soft deprecated the authors field anyway, hiding it from
crates.io, docs.rs, and making Cargo not add it by default, and it is
not generally up to date/useful information, we should remove it from
crates in this repo.
Currently, we parse macros at the end of a block
(e.g. `fn foo() { my_macro!() }`) as expressions, rather than
statements. This means that a macro invoked in this position
cannot expand to items or semicolon-terminated expressions.
In the future, we might want to start parsing these kinds of macros
as statements. This would make expansion more 'token-based'
(i.e. macro expansion behaves (almost) as if you just textually
replaced the macro invocation with its output). However,
this is a breaking change (see PR #78991), so it will require
further discussion.
Since the current behavior will not be changing any time soon,
we need to address the interaction with the
`SEMICOLON_IN_EXPRESSIONS_FROM_MACROS` lint. Since we are parsing
the result of macro expansion as an expression, we will emit a lint
if there's a trailing semicolon in the macro output. However, this
results in a somewhat confusing message for users, since it visually
looks like there should be no problem with having a semicolon
at the end of a block
(e.g. `fn foo() { my_macro!() }` => `fn foo() { produced_expr; }`)
To help reduce confusion, this commit adds a note explaining
that the macro is being interpreted as an expression. Additionally,
we suggest adding a semicolon after the macro *invocation* - this
will cause us to parse the macro call as a statement. We do *not*
use a structured suggestion for this, since the user may actually
want to remove the semicolon from the macro definition (allowing
the block to evaluate to the expression produced by the macro).
Warn on inert attributes used on bang macro invocation
These attributes are currently discarded.
This may change in the future (see #63221), but for now,
placing inert attributes on a macro invocation does nothing,
so we should warn users about it.
Technically, it's possible for there to be attribute macro
on the same macro invocation (or at a higher scope), which
inspects the inert attribute. For example:
```rust
#[look_for_inline_attr]
#[inline]
my_macro!()
#[look_for_nested_inline]
mod foo { #[inline] my_macro!() }
```
However, this would be a very strange thing to do.
Anyone running into this can manually suppress the warning.
These attributes are currently discarded.
This may change in the future (see #63221), but for now,
placing inert attributes on a macro invocation does nothing,
so we should warn users about it.
Technically, it's possible for there to be attribute macro
on the same macro invocation (or at a higher scope), which
inspects the inert attribute. For example:
```rust
#[look_for_inline_attr]
#[inline]
my_macro!()
#[look_for_nested_inline]
mod foo { #[inline] my_macro!() }
```
However, this would be a very strange thing to do.
Anyone running into this can manually suppress the warning.
When we need to emit a lint at a macro invocation, we currently use the
`NodeId` of its parent definition (e.g. the enclosing function). This
means that any `#[allow]` / `#[deny]` attributes placed 'closer' to the
macro (e.g. on an enclosing block or statement) will have no effect.
This commit computes a better `lint_node_id` in `InvocationCollector`.
When we visit/flat_map an AST node, we assign it a `NodeId` (earlier
than we normally would), and store than `NodeId` in current
`ExpansionData`. When we collect a macro invocation, the current
`lint_node_id` gets cloned along with our `ExpansionData`, allowing it
to be used if we need to emit a lint later on.
This improves the handling of `#[allow]` / `#[deny]` for
`SEMICOLON_IN_EXPRESSIONS_FROM_MACROS` and some `asm!`-related lints.
The 'legacy derive helpers' lint retains its current behavior
(I've inlined the now-removed `lint_node_id` function), since
there isn't an `ExpansionData` readily available.
It makes very little sense to maintain denylists of ABIs when, as far as
non-generic ABIs are concerned, targets usually only support a small
subset of the available ABIs.
This has historically been a cause of bugs such as us allowing use of
the platform-specific ABIs on x86 targets – these in turn would cause
LLVM errors or assertions to fire.
Fixes#57182
Sponsored by: standard.ai
Remove unused dependencies from compiler crates
Various compiler crates have dependencies that they don't appear to use. I used some scripting to detect such dependencies, filtered them based on some manual review, and removed those that do indeed appear to be entirely unused.
Turn non_fmt_panic into a future_incompatible edition lint.
This turns the `non_fmt_panic` lint into a future_incompatible edition lint, so it becomes part of the `rust_2021_compatibility` group. See https://github.com/rust-lang/rust/issues/85894.
This lint produces both warnings about semantical changes (e.g. `panic!("{{")`) and things that will become hard errors (e.g. `panic!("{")`). So I added a `explain_reason: false` that supresses the default "this will become a hard error" or "the semantics will change" message, and instead added a note depending on the situation. (cc `@rylev)`
r? `@nikomatsakis`
Add `future_prelude_collision` lint
Implements #84594. (RFC rust-lang/rfcs#3114 ([rendered](https://github.com/rust-lang/rfcs/blob/master/text/3114-prelude-2021.md))) Not entirely complete but wanted to have my progress decently available while I finish off the last little bits.
Things left to implement:
* [x] UI tests for lints
* [x] Only emit lint for 2015 and 2018 editions
* [ ] Lint name/message bikeshedding
* [x] Implement for `FromIterator` (from best I can tell, the current approach as mentioned from [this comment](https://github.com/rust-lang/rust/issues/84594#issuecomment-847288288) won't work due to `FromIterator` instances not using dot-call syntax, but if I'm correct about this then that would also need to be fixed for `TryFrom`/`TryInto`)*
* [x] Add to `rust-2021-migration` group? (See #85512) (added to `rust-2021-compatibility` group)
* [ ] Link to edition guide in lint docs
*edit: looked into it, `lookup_method` will also not be hit for `TryFrom`/`TryInto` for non-dotcall syntax. If anyone who is more familiar with typecheck knows the equivalent for looking up associated functions, feel free to chime in.
Update BARE_TRAIT_OBJECT and ELLIPSIS_INCLUSIVE_RANGE_PATTERNS to errors in Rust 2021
This addresses https://github.com/rust-lang/rust/pull/81244 by updating two lints to errors in the Rust 2021 edition.
r? `@estebank`
resolve: Partially unify early and late scope-relative identifier resolution
Reuse `early_resolve_ident_in_lexical_scope` instead of a chunk of code in `resolve_ident_in_lexical_scope` doing the same job.
`early_resolve_ident_in_lexical_scope`/`visit_scopes` had to be slightly extended to be able to 1) start from a specific module instead of the current parent scope and 2) report one deprecation lint.
`early_resolve_ident_in_lexical_scope` still doesn't support walking through "ribs", that part is left in `resolve_ident_in_lexical_scope` (moreover, I'm pretty sure it's buggy, but that's a separate issue, cc https://github.com/rust-lang/rust/issues/52389 at least).
Now that future-incompat-report support has landed in nightly Cargo, we
can start to make progress towards removing the various proc-macro
back-compat hacks that have accumulated in the compiler.
This PR introduces a new lint `proc_macro_back_compat`, which results in
a future-incompat-report entry being generated. All proc-macro
back-compat warnings will be grouped under this lint. Note that this
lint will never actually become a hard error - instead, we will remove
the special cases for various macros, which will cause older versions of
those crates to emit some other error.
I've added code to fire this lint for the `time-macros-impl` case. This
is the easiest case out of all of our current back-compat hacks - the
crate was renamed to `time-macros`, so seeing a filename with
`time-macros-impl` guarantees that an older version of the parent `time`
crate is in use.
When Cargo's future-incompat-report feature gets stabilized, affected
users will start to see future-incompat warnings when they build their
crates.
Stabilize `unsafe_op_in_unsafe_fn` lint
This makes it possible to override the level of the `unsafe_op_in_unsafe_fn`, as proposed in https://github.com/rust-lang/rust/issues/71668#issuecomment-729770896.
Tracking issue: #71668
r? ```@nikomatsakis``` cc ```@SimonSapin``` ```@RalfJung```
# Stabilization report
This is a stabilization report for `#![feature(unsafe_block_in_unsafe_fn)]`.
## Summary
Currently, the body of unsafe functions is an unsafe block, i.e. you can perform unsafe operations inside.
The `unsafe_op_in_unsafe_fn` lint, stabilized here, can be used to change this behavior, so performing unsafe operations in unsafe functions requires an unsafe block.
For now, the lint is allow-by-default, which means that this PR does not change anything without overriding the lint level.
For more information, see [RFC 2585](https://github.com/rust-lang/rfcs/blob/master/text/2585-unsafe-block-in-unsafe-fn.md)
### Example
```rust
// An `unsafe fn` for demonstration purposes.
// Calling this is an unsafe operation.
unsafe fn unsf() {}
// #[allow(unsafe_op_in_unsafe_fn)] by default,
// the behavior of `unsafe fn` is unchanged
unsafe fn allowed() {
// Here, no `unsafe` block is needed to
// perform unsafe operations...
unsf();
// ...and any `unsafe` block is considered
// unused and is warned on by the compiler.
unsafe {
unsf();
}
}
#[warn(unsafe_op_in_unsafe_fn)]
unsafe fn warned() {
// Removing this `unsafe` block will
// cause the compiler to emit a warning.
// (Also, no "unused unsafe" warning will be emitted here.)
unsafe {
unsf();
}
}
#[deny(unsafe_op_in_unsafe_fn)]
unsafe fn denied() {
// Removing this `unsafe` block will
// cause a compilation error.
// (Also, no "unused unsafe" warning will be emitted here.)
unsafe {
unsf();
}
}
```
- Move MISSING_CRATE_LEVEL_DOCS to rustdoc directly
- Update documentation
This also takes the opportunity to make the `no-crate-level-doc-lint`
test more specific.
- Rename `broken_intra_doc_links` to `rustdoc::broken_intra_doc_links`
- Ensure that the old lint names still work and give deprecation errors
- Register lints even when running doctests
Otherwise, all `rustdoc::` lints would be ignored.
- Register all existing lints as removed
This unfortunately doesn't work with `register_renamed` because tool
lints have not yet been registered when rustc is running. For similar
reasons, `check_backwards_compat` doesn't work either. Call
`register_removed` directly instead.
- Fix fallout
+ Rustdoc lints for compiler/
+ Rustdoc lints for library/
Note that this does *not* suggest `rustdoc::broken_intra_doc_links` for
`rustdoc::intra_doc_link_resolution_failure`, since there was no time
when the latter was valid.