Make sure to mark `IMPL_TRAIT_REDUNDANT_CAPTURES` as `Allow` in edition 2024
I never got sign-off on #127672 for this lint being warn by default in edition 2024, so let's turn downgrade this lint to allow for now.
Should be backported so it ships with the edition.
```@rustbot``` label: +beta-nominated
Detect `mut arg: &Ty` meant to be `arg: &mut Ty` and provide structured suggestion
When a newcomer attempts to use an "out parameter" using borrows, they sometimes get confused and instead of mutating the borrow they try to mutate the function-local binding instead. This leads to either type errors (due to assigning an owned value to a mutable binding of reference type) or a multitude of lifetime errors and unused binding warnings.
This change adds a suggestion to the type error
```
error[E0308]: mismatched types
--> $DIR/mut-arg-of-borrowed-type-meant-to-be-arg-of-mut-borrow.rs:6:14
|
LL | fn change_object(mut object: &Object) {
| ------- expected due to this parameter type
LL | let object2 = Object;
LL | object = object2;
| ^^^^^^^ expected `&Object`, found `Object`
|
help: you might have meant to mutate the pointed at value being passed in, instead of changing the reference in the local binding
|
LL ~ fn change_object(object: &mut Object) {
LL | let object2 = Object;
LL ~ *object = object2;
|
```
and to the unused assignment lint
```
error: value assigned to `object` is never read
--> $DIR/mut-arg-of-borrowed-type-meant-to-be-arg-of-mut-borrow.rs:11:5
|
LL | object = &object2;
| ^^^^^^
|
note: the lint level is defined here
--> $DIR/mut-arg-of-borrowed-type-meant-to-be-arg-of-mut-borrow.rs:1:9
|
LL | #![deny(unused_assignments, unused_variables)]
| ^^^^^^^^^^^^^^^^^^
help: you might have meant to mutate the pointed at value being passed in, instead of changing the reference in the local binding
|
LL ~ fn change_object2(object: &mut Object) {
LL | let object2 = Object;
LL ~ *object = object2;
|
```
Fix#112357.
Fix cycle error only occurring with -Zdump-mir
fixes#134205
During mir dumping, we evaluate static items to render their allocations. If a static item refers to itself, its own MIR will have a reference to itself, so during mir dumping we end up evaluating the static again, causing us to try to build MIR again (mir dumping happens during MIR building).
Thus I disabled evaluation of statics during MIR dumps in case the MIR body isn't far enough along yet to be able to be guaranteed cycle free.
If we build the standard library with wasm-eh then we need to link
with `-fwasm-exceptions` even if we compile with `panic=abort`
Without this change, linking a `panic=abort` crate fails with:
`undefined symbol: __cpp_exception`.
Followup to #131830.
Refactored the duplicated code into a function.
`with_feed_task` currently passes the query key to `debug_assert!`.
This commit changes that, so it debug prints the `DepNode`, as in
`with_task`.
Assert that `Instance::try_resolve` is only used on body-like things
`Instance::resolve` is not set up to resolve items that are not body-like things. The logic in `resolve_associated_item` very much encodes this assumption:
e7ad3ae331/compiler/rustc_ty_utils/src/instance.rs (L96-L386)
However, some diagnostics were using `Instance::resolve` on an associated type, and it was simply a lucky coicidence that nothing went wrong.
This PR adds an assertion to make sure we won't do this again in the future, and fixes two callsites:
1. `call_kind` which returns a `CallKind` enum to categorize what a call in MIR comes from, and was using `Instance::resolve` to point at the associated type `Deref::Target` for a specific self ty.
2. `MirBorrowckCtxt::explain_deref_coercion`, which was doing the same thing.
The logic was replaced with `specialization_graph::assoc_def`, which is the proper way of fetching the right `AssocItem` for a given impl.
r? `@lcnr` or re-roll :)
fix handling of ZST in win64 ABI on windows-msvc targets
The Microsoft calling conventions do not really say anything about ZST since they do not seem to exist in MSVC. However, both GCC and clang allow passing ZST over `__attribute__((ms_abi))` functions (which matches our `extern "win64" fn`) on `windows-gnu` targets, and therefore implicitly define a de-facto ABI for these types (and lucky enough they seem to define the same ABI). This ABI should be the same for windows-msvc and windows-gnu targets, so we use this as a hint for how to implement this ABI everywhere: we always pass ZST by-ref.
The best alternative would be to just reject compiling functions which cannot exist in MSVC, but that would be a breaking change.
Cc `@programmerjake` `@ChrisDenton`
Fixes https://github.com/rust-lang/rust/issues/132893
Depth limit const eval query
Currently the const-eval query doesn't have a recursion limit or timeout, causing the complier to freeze in an infinite loop, see #125718. This PR depth limits the `eval_to_const_value_raw` query (with the [`recursion_limit`](https://doc.rust-lang.org/reference/attributes/limits.html) attribute) and improves the diagnostics for query overflow errors, so spans are reported for other dep kinds than `layout_of` (e.g. `eval_to_const_value_raw`).
fixes#125718fixes#114192
Remove allocations from case-insensitive comparison to keywords
Follows up on work in 99d02fb40f, expanding the alloc-free comparisons to more cases of case-insensitive keyword matching.
r? ghost for perf
Update unstable lint docs to include required feature attributes
closes#135298
## Summary
This PR updates the documentation examples for the following unstable lints to ensure they include the necessary feature attributes for proper usage:
- fuzzy_provenance_casts
- lossy_provenance_casts
- unqualified_local_imports
- test_unstable_lint
## Changes Made:
- Added the appropriate #![feature(...)] attributes to the example code for each lint.
- Updated the examples to produce correct and meaningful warnings, ensuring they align with current lint behavior.
Reference:
- Used the `must_not_suspend` lint documentation as a template for these updates.
De-abstract tagged ptr and make it covariant
In #135272 I needed to use a tagged ptr in `hir::TyKind` in order to not regress hir type sizes. Unfortunately the existing `CopyTaggedPtr` abstraction is insufficient as it makes the `'hir` lifetime invariant.
I spent some time trying to keep existing functionality while making it covariant but in the end I realised that actually we dont use *any* of this code *anywhere* in rustc, so I've just removed everything and replaced it with a much less general abstraction that is suitable for what I need in #135272.
Idk if anyone has a preference for just keeping all the abstractions here in case anyone needs them in the future 🤷♀️
Rollup of 6 pull requests
Successful merges:
- #129259 (Add inherent versions of MaybeUninit methods for slices)
- #135374 (Suggest typo fix when trait path expression is typo'ed)
- #135377 (Make MIR cleanup for functions with impossible predicates into a real MIR pass)
- #135378 (Remove a bunch of diagnostic stashing that doesn't do anything)
- #135397 (compiletest: add erroneous variant to `string_enum`s conversions error)
- #135398 (add more crash tests)
r? `@ghost`
`@rustbot` modify labels: rollup
Remove a bunch of diagnostic stashing that doesn't do anything
#121669 removed a bunch of conditional diagnostic stashing/canceling, but left around the `steal` calls which just emitted the error eagerly instead of canceling the diagnostic. I think that these no-op `steal` calls don't do much and are confusing to encounter, so let's remove them.
The net effect is:
1. We emit more duplicated errors, since stashing has the side effect of duplicating diagnostics. This is not a big deal, since outside of `-Zdeduplicate-diagnostics=no`, the errors are already being deduplicated by the compiler.
2. It changes the order of diagnostics, since we're no longer stashing and then later stealing the errors. I don't think this matters much for the changes that the UI test suite manifests, and it makes these errors less order dependent.
Make MIR cleanup for functions with impossible predicates into a real MIR pass
It's a bit jarring to see the body of a function with an impossible-to-satisfy where clause suddenly go to a single `unreachable` terminator when looking at the MIR dump output in order, and I discovered it's because we manually replace the body outside of a MIR pass.
Let's make it into a fully flegded MIR pass so it's more clear what it's doing and when it's being applied.
Suggest typo fix when trait path expression is typo'ed
When users write something like `Default::defualt()` (notice the typo), failure to resolve the erroneous `defualt` item will cause resolution + lowering to interpret this as a type-dependent path whose self type is `Default` which is a trait object without `dyn`, rather than a trait function like `<_ as Default>::default()`.
Try to provide a bit of guidance in this situation when we can detect the typo.
Fixes https://github.com/rust-lang/rust/issues/135349
Add inherent versions of MaybeUninit methods for slices
This is my attempt to un-stall #63569 and #79995, by creating methods that mirror the existing `MaybeUninit` API:
```rust
impl<T> MaybeUninit<T> {
pub fn write(&mut self, value: T) -> &mut T;
pub fn as_bytes(&self) -> &[MaybeUninit<u8>];
pub fn as_bytes_mut(&mut self) -> &mut [MaybeUninit<u8>];
pub unsafe fn assume_init_drop(&mut self);
pub unsafe fn assume_init_ref(&self) -> &T;
pub unsafe fn assume_init_mut(&mut self) -> &mut T;
}
```
Adding these APIs:
```rust
impl<T> [MaybeUninit<T>] {
// replacing copy_from_slice; renamed to avoid conflict
pub fn write_copy_of_slice(&mut self, value: &[T]) -> &mut [T] where T: Copy;
// replacing clone_from_slice; renamed to avoid conflict
pub fn write_clone_of_slice(&mut self, value: &[T]) -> &mut [T] where T: Clone;
// identical to non-slice versions; no conflict
pub fn as_bytes(&self) -> &[MaybeUninit<u8>];
pub fn as_bytes_mut(&mut self) -> &mut [MaybeUninit<u8>];
pub unsafe fn assume_init_drop(&mut self);
pub unsafe fn assume_init_ref(&self) -> &[T];
pub unsafe fn assume_init_mut(&mut self) -> &mut [T];
}
```
Since the `assume_init` methods are identical to those on non-slices, they feel pretty natural. The main issue with the write methods is naming, as discussed in #79995 among other places. My rationale:
* The term "write" should be in them somewhere, to mirror the other API, and this pretty much automatically makes them not collide with any other inherent slice methods.
* I chose `write_clone_of_slice` and `write_copy_of_slice` since `clone` and `copy` are being used as objects here, whereas they're being used as actions in `clone_from_slice` and `copy_from_slice`.
The final "weird" thing I've done in this PR is remove a link to `Vec<T>` from `assume_init_drop` (both copies, since they're effectively copied docs), since there's no good way to link to `Vec` for something that can occur both on the page for `std/primitive.slice.html` and `std/vec/struct.Vec.html`, since the code here lives in libcore and can't use intra-doc-linking to mention `Vec`. (see: #121436)
The reason why this method shows up both on `Vec<T>` and `[T]` is because the `[T]` docs are automatically inlined on `Vec<T>`'s page, since it implements `Deref`. It's unfortunate that rustdoc doesn't have a way of dealing with this at the moment, but it is what it is, and it's a reasonable compromise for now.
Cleanup `suggest_binding_for_closure_capture_self` diag in borrowck
Mostly grammar fix/improvement, but also a small cleanup to use iterators instead of for loops for collecting into a vector.
this addresses review comments while:
- keeping the symmetry between the NLL and Polonius out of scope
precomputers
- keeping the unstable `calculate_borrows_out_of_scope_at_location`
function to avoid churn for consumers
we're in in the endgame now
set up the location-sensitive analysis end to end:
- stop recording inflowing loans and loan liveness in liveness
- replace location-insensitive liveness data with live loans computed by
reachability
- remove equivalence between polonius scopes and NLL scopes, and only
run one scope computation
in NLLs some locals are marked live at all points if one of their
regions escapes the function but that doesn't work in a flow-sensitive
setting like polonius
Eagerly collect mono items for non-generic closures
This allows users to use `-Zprint-mono-items=eager` to eagerly monomorphize closures and coroutine bodies, in case they want to inspect the LLVM or ASM for those items.
`-Zprint-mono-items`, which used to be called `-Zprint-trans-items`, was originally added in https://github.com/rust-lang/rust/pull/30900:
> Eager mode is meant to be used in conjunction with incremental compilation
> where a stable set of translation items is more important than a minimal
> one. Thus, eager mode will instantiate drop-glue for every drop-able type
> in the crate, even of no drop call for that type exists (yet). It will
> also instantiate default implementations of trait methods, something that
> otherwise is only done on demand.
Although it remains an unstable option, its purpose has somewhat expanded since then, and as far as I can tell it's generally useful for cases when you want to monomorphize as many items as possible, even if they're unreachable. Specifically, it's useful for debugging since you can look at the codegen'd body of a function, since we don't emit items that are not reachable in monomorphization.
And even more specifically, it would be very to monomorphize the coroutine body of an async fn, since those you can't easily call those without a runtime. This PR enables this usecase since we now monomorphize `DefKind::Closure`.
Rename `BitSet` to `DenseBitSet`
r? `@Mark-Simulacrum` as you requested this in https://github.com/rust-lang/rust/pull/134438#discussion_r1890659739 after such a confusion.
This PR renames `BitSet` to `DenseBitSet` to make it less obvious as the go-to solution for bitmap needs, as well as make its representation (and positives/negatives) clearer. It also expands the comments there to hopefully make it clearer when it's not a good fit, with some alternative bitsets types.
(This migrates the subtrees cg_gcc and clippy to use the new name in separate commits, for easier review by their respective owners, but they can obvs be squashed)
Avoid ICE: Account for `for<'a>` types when checking for non-structural type in constant as pattern
When we encounter a constant in a pattern, we check if it is non-structural. If so, we check if the type implements `PartialEq`, but for types with escaping bound vars the check would be incorrect as is, so we break early. This is ok because these types would be filtered anyways.
Slight tweak to output to remove unnecessary context as a drive-by.
Fix#134764.
add `-Zmin-function-alignment`
tracking issue: https://github.com/rust-lang/rust/issues/82232
This PR adds the `-Zmin-function-alignment=<align>` flag, that specifies a minimum alignment for all* functions.
### Motivation
This feature is requested by RfL [here](https://github.com/rust-lang/rust/issues/128830):
> i.e. the equivalents of `-fmin-function-alignment` ([GCC](https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html#index-fmin-function-alignment_003dn), Clang does not support it) / `-falign-functions` ([GCC](https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html#index-falign-functions), [Clang](https://clang.llvm.org/docs/ClangCommandLineReference.html#cmdoption-clang1-falign-functions)).
>
> For the Linux kernel, the behavior wanted is that of GCC's `-fmin-function-alignment` and Clang's `-falign-functions`, i.e. align all functions, including cold functions.
>
> There is [`feature(fn_align)`](https://github.com/rust-lang/rust/issues/82232), but we need to do it globally.
### Behavior
The `fn_align` feature does not have an RFC. It was decided at the time that it would not be necessary, but maybe we feel differently about that now? In any case, here are the semantics of this flag:
- `-Zmin-function-alignment=<align>` specifies the minimum alignment of all* functions
- the `#[repr(align(<align>))]` attribute can be used to override the function alignment on a per-function basis: when `-Zmin-function-alignment` is specified, the attribute's value is only used when it is higher than the value passed to `-Zmin-function-alignment`.
- the target may decide to use a higher value (e.g. on x86_64 the minimum that LLVM generates is 16)
- The highest supported alignment in rust is `2^29`: I checked a bunch of targets, and they all emit the `.p2align 29` directive for targets that align functions at all (some GPU stuff does not have function alignment).
*: Only with `build-std` would the minimum alignment also be applied to `std` functions.
---
cc `@ojeda`
r? `@workingjubilee` you were active on the tracking issue
Add an InstSimplify for repetitive array expressions
I noticed in https://github.com/rust-lang/rust/pull/135068#issuecomment-2569955426 that GVN's implementation of this same transform was quite profitable on the deep-vector benchmark. But of course GVN doesn't run in unoptimized builds, so this is my attempt to write a version of this transform that benefits the deep-vector case and is fast enough to run in InstSimplify.
The benchmark suite indicates that this is effective.
Use llvm.memset.p0i8.* to initialize all same-bytes arrays
Similar to #43488
debug builds can now handle `0x0101_u16` and other multi-byte scalars that have all the same bytes (instead of special casing just `0`)
```
error: value assigned to `object` is never read
--> $DIR/mut-arg-of-borrowed-type-meant-to-be-arg-of-mut-borrow.rs:11:5
|
LL | object = &object2;
| ^^^^^^
|
note: the lint level is defined here
--> $DIR/mut-arg-of-borrowed-type-meant-to-be-arg-of-mut-borrow.rs:1:9
|
LL | #![deny(unused_assignments, unused_variables)]
| ^^^^^^^^^^^^^^^^^^
help: you might have meant to mutate the pointed at value being passed in, instead of changing the reference in the local binding
|
LL ~ fn change_object2(object: &mut Object) {
LL | let object2 = Object;
LL ~ *object = object2;
|
```
This might be the first thing someone tries to write to mutate the value *behind* an argument, trying to avoid an E0308.
```
error[E0308]: mismatched types
--> $DIR/mut-arg-of-borrowed-type-meant-to-be-arg-of-mut-borrow.rs:6:14
|
LL | fn change_object(mut object: &Object) {
| ------- expected due to this parameter type
LL | let object2 = Object;
LL | object = object2;
| ^^^^^^^ expected `&Object`, found `Object`
|
help: you might have meant to mutate the pointed at value being passed in, instead of changing the reference in the local binding
|
LL ~ fn change_object(object: &mut Object) {
LL | let object2 = Object;
LL ~ *object = object2;
|
```
This might be the first thing someone tries to write to mutate the value *behind* an argument. We avoid suggesting `object = &object2;`, as that is less likely to be what was intended.
When we encounter a constant in a pattern, we check if it is non-structural. If so, we check if the type implements `PartialEq`, but for types with escaping bound vars the check would be incorrect as is, so we break early. This is ok because these types would be filtered anyways.
Fix#134764.
Adds `#[rustc_force_inline]` which is similar to always inlining but
reports an error if the inlining was not possible, and which always
attempts to inline annotated items, regardless of optimisation levels.
It can only be applied to free functions to guarantee that the MIR
inliner will be able to resolve calls.
Subtree sync for rustc_codegen_cranelift
This has a couple of changes that will conflict with https://github.com/rust-lang/rust/pull/134338.
r? `@ghost`
`@rustbot` label +A-codegen +A-cranelift +T-compiler
Rollup of 7 pull requests
Successful merges:
- #132607 (Used pthread name functions returning result for FreeBSD and DragonFly)
- #134693 (proc_macro: Use `ToTokens` trait in `quote` macro)
- #134732 (Unify conditional-const error reporting with non-const error reporting)
- #135083 (Do not ICE when encountering predicates from other items in method error reporting)
- #135251 (Only treat plain literal patterns as short)
- #135320 (Fix typo in `#[coroutine]` gating error)
- #135321 (remove more redundant into() conversions)
r? `@ghost`
`@rustbot` modify labels: rollup
Do not ICE when encountering predicates from other items in method error reporting
See the comments I left in the code and the test file.
Fixes https://github.com/rust-lang/rust/issues/124350
Unify conditional-const error reporting with non-const error reporting
This PR unifies the error reporting between `ConditionallyConstCall` and `FnCallNonConst` so that the former will refer to syntactical sugar like operators by their sugared name, rather than calling all operators "methods". We achieve this by making the "non-const" part of the error message generic over the "non" part so we can plug in "conditionally" instead.
This should ensure that as we constify traits in the standard library, we don't regress error messages for things like `==`.
r? fmease or reassign
Remove special-casing for argument patterns in MIR typeck (attempt to fix perf regression of #133858)
See [my comment](https://github.com/rust-lang/rust/pull/133858#issuecomment-2579029618) on #133858 for more information. This is just a guess as to what went wrong, and I haven't been able to get the profiler running locally, so I'll need a perf run to make sure this actually helps.
There's one test's stderr that suffers a bit, but this was just papering over the issue anyway. Making region errors point to the correct constraints in the presence of invariance/contravariance is a broader problem; the current way it's handled is mostly based on guesswork, luck, and hoping it works out. Properly handling that (somehow) would improve the test's stderr without the hack that this PR reverts.
Make sure to walk into nested const blocks in `RegionResolutionVisitor`
Fixes https://github.com/rust-lang/rust/issues/135306
I tried auditing the rest of the visitors that called `.visit_body`, and it seems like this is the only one that was missing it. I wonder if we should modify intravisit (specifcially, that `NestedBodyFilter` stuff) to make this less likely to happen, tho...
r? oli-obk
`-Zrandomize-layout` harder. `Foo<T> != Foo<U>`
Tracking issue: #106764
Previously randomize-layout only used a deterministic shuffle based on the seed stored in an Adt's ReprOptions, meaning that `Foo<T>` and `Foo<U>` were shuffled by the same seed. This change adds a similar seed to each calculated LayoutData so that a struct can be randomized both based on the layout of its fields and its per-type seed.
Primitives start with simple seed derived from some of their properties. Though some types can no longer be distinguished at that point, e.g. usize and u64 will still be treated the same.
previously field ordering was using the same seed for all instances of Foo,
now we pass seed values through the layout tree so that not only
the struct itself affects layout but also its fields
Rollup of 3 pull requests
Successful merges:
- #134898 (Make it easier to run CI jobs locally)
- #135195 (Make `lit_to_mir_constant` and `lit_to_const` infallible)
- #135261 (Account for identity substituted items in symbol mangling)
r? `@ghost`
`@rustbot` modify labels: rollup
Make `lit_to_mir_constant` and `lit_to_const` infallible
My motivation for this change is just that it's annoying to check everywhere, especially since all but one call site was just ICEing on errors anyway right there.
They can still fail, but now just return an error constant instead of having the caller handle the error.
fixes#114317fixes#126182
Rollup of 5 pull requests
Successful merges:
- #135212 (Remove outdated information in the `unreachable_pub` lint description)
- #135225 (Explicitly build proc macro test with panic=unwind)
- #135242 (add missing provenance APIs on NonNull)
- #135247 (Add a list of symbols for stable standard library crates)
- #135269 (Remove some unnecessary `.into()` calls)
r? `@ghost`
`@rustbot` modify labels: rollup
`Ty::new` wasn't used anywhere outside this module
`Ty::new_adt` shouldn't ever be used for anything but adts. This hasn't caught any bugs, but seems good to check anyway
Add a list of symbols for stable standard library crates
There are a few locations where the crate name is checked against an enumerated list of `std`, `core`, `alloc`, and `proc_macro`, or some subset thereof. In most cases when we are looking for any "standard library" crate, all four crates should be treated the same. Change this so the crates are listed in one place, and that list is used wherever a list of `std` crates is needed.
`test` could be considered relevant in some of these cases, but generally treating it separate from the others seems preferable while it is unstable.
There are also a few places that Clippy will be able to use this.
Explicitly build proc macro test with panic=unwind
Fuchsia explicitly builds rust and all rust targets with `-C panic=abort` to minimize code generation size. However, when compiling a proc-macro with this setting it can cause a warning to be emitted, which breaks `tests/ui/invalid-compile-flags/crate-type-flag.rs`. This hasn't been a problem in the past for us since we compile our proc macros on host, rather than inside Fuchsia.
This attempts to fix the issue by explicitly requiring that we're using the unwinder when compiling this test to avoid the warning being emitted.
Fixes#135223
Remove outdated information in the `unreachable_pub` lint description
As far as I understand the `unreachable_pub` lint hasn't had false-positives since it started using "effective visibilities". Let's remove that warning from the lint description.
r? `@petrochenkov`
[mir-opt] GVN some more transmute cases
We already did `Transmute`-then-`PtrToPtr`; this adds the nearly-identical `PtrToPtr`-then-`Transmute`.
It also adds `transmute(Foo(x))` → `transmute(x)`, when `Foo` is a single-field transparent type. That's useful for things like `NonNull { pointer: p }.as_ptr()`. It also detects when a `Transmute` is just an identity-for-the-value `PtrCast` between different raw pointer types, to help such things fold with other GVN passes.
Found these as I was looking at <https://github.com/rust-lang/compiler-team/issues/807>-related changes. This also removes the questionably-useful "turn a transmute into a field projection" part of instsimplify (which I added ages ago without an obvious need for it) since that would just put back the field projections that MCP807 is trying to ban.
r? mir-opt
Implement `const Destruct` in old solver
Self-explanatory. Not totally settled that this is the best structure for built-in trait impls for effect goals in the new solver, but it's almost certainly the simplest.
r? lcnr or re-roll
Add new `{x86_64,i686}-win7-windows-gnu` targets
These are in symmetry with `{x86_64,i686}-win7-windows-msvc`.
> ## Tier 3 target policy
>
> At this tier, the Rust project provides no official support for a target, so we
> place minimal requirements on the introduction of targets.
>
> A proposed new tier 3 target must be reviewed and approved by a member of the
> compiler team based on these requirements. The reviewer may choose to gauge
> broader compiler team consensus via a [Major Change Proposal (MCP)][https://forge.rust-lang.org/compiler/mcp.html].
>
> A proposed target or target-specific patch that substantially changes code
> shared with other targets (not just target-specific code) must be reviewed and
> approved by the appropriate team for that shared code before acceptance.
>
> - A tier 3 target must have a designated developer or developers (the "target
> maintainers") on record to be CCed when issues arise regarding the target.
> (The mechanism to track and CC such developers may evolve over time.)
This is me, `@tbu-` on github.
> - Targets must use naming consistent with any existing targets; for instance, a
> target for the same CPU or OS as an existing Rust target should use the same
> name for that CPU or OS. Targets should normally use the same names and
> naming conventions as used elsewhere in the broader ecosystem beyond Rust
> (such as in other toolchains), unless they have a very good reason to
> diverge. Changing the name of a target can be highly disruptive, especially
> once the target reaches a higher tier, so getting the name right is important
> even for a tier 3 target.
> - Target names should not introduce undue confusion or ambiguity unless
> absolutely necessary to maintain ecosystem compatibility. For example, if
> the name of the target makes people extremely likely to form incorrect
> beliefs about what it targets, the name should be changed or augmented to
> disambiguate it.
> - If possible, use only letters, numbers, dashes and underscores for the name.
> Periods (`.`) are known to cause issues in Cargo.
Consistent with `{x86_64,i686}-win7-windows-msvc`, see also #118150.
> - Tier 3 targets may have unusual requirements to build or use, but must not
> create legal issues or impose onerous legal terms for the Rust project or for
> Rust developers or users.
> - The target must not introduce license incompatibilities.
> - Anything added to the Rust repository must be under the standard Rust
> license (`MIT OR Apache-2.0`).
> - The target must not cause the Rust tools or libraries built for any other
> host (even when supporting cross-compilation to the target) to depend
> on any new dependency less permissive than the Rust licensing policy. This
> applies whether the dependency is a Rust crate that would require adding
> new license exceptions (as specified by the `tidy` tool in the
> rust-lang/rust repository), or whether the dependency is a native library
> or binary. In other words, the introduction of the target must not cause a
> user installing or running a version of Rust or the Rust tools to be
> subject to any new license requirements.
> - Compiling, linking, and emitting functional binaries, libraries, or other
> code for the target (whether hosted on the target itself or cross-compiling
> from another target) must not depend on proprietary (non-FOSS) libraries.
> Host tools built for the target itself may depend on the ordinary runtime
> libraries supplied by the platform and commonly used by other applications
> built for the target, but those libraries must not be required for code
> generation for the target; cross-compilation to the target must not require
> such libraries at all. For instance, `rustc` built for the target may
> depend on a common proprietary C runtime library or console output library,
> but must not depend on a proprietary code generation library or code
> optimization library. Rust's license permits such combinations, but the
> Rust project has no interest in maintaining such combinations within the
> scope of Rust itself, even at tier 3.
> - "onerous" here is an intentionally subjective term. At a minimum, "onerous"
> legal/licensing terms include but are *not* limited to: non-disclosure
> requirements, non-compete requirements, contributor license agreements
> (CLAs) or equivalent, "non-commercial"/"research-only"/etc terms,
> requirements conditional on the employer or employment of any particular
> Rust developers, revocable terms, any requirements that create liability
> for the Rust project or its developers or users, or any requirements that
> adversely affect the livelihood or prospects of the Rust project or its
> developers or users.
AFAICT, it's the same legal situation as the tier 1 `{x86_64,i686}-pc-windows-gnu`.
> - Neither this policy nor any decisions made regarding targets shall create any
> binding agreement or estoppel by any party. If any member of an approving
> Rust team serves as one of the maintainers of a target, or has any legal or
> employment requirement (explicit or implicit) that might affect their
> decisions regarding a target, they must recuse themselves from any approval
> decisions regarding the target's tier status, though they may otherwise
> participate in discussions.
> - This requirement does not prevent part or all of this policy from being
> cited in an explicit contract or work agreement (e.g. to implement or
> maintain support for a target). This requirement exists to ensure that a
> developer or team responsible for reviewing and approving a target does not
> face any legal threats or obligations that would prevent them from freely
> exercising their judgment in such approval, even if such judgment involves
> subjective matters or goes beyond the letter of these requirements.
Understood.
> - Tier 3 targets should attempt to implement as much of the standard libraries
> as possible and appropriate (`core` for most targets, `alloc` for targets
> that can support dynamic memory allocation, `std` for targets with an
> operating system or equivalent layer of system-provided functionality), but
> may leave some code unimplemented (either unavailable or stubbed out as
> appropriate), whether because the target makes it impossible to implement or
> challenging to implement. The authors of pull requests are not obligated to
> avoid calling any portions of the standard library on the basis of a tier 3
> target not implementing those portions.
This target supports the whole libstd surface, since it's essentially reusing all of the x86_64-pc-windows-gnu target. Understood.
> - The target must provide documentation for the Rust community explaining how
> to build for the target, using cross-compilation if possible. If the target
> supports running binaries, or running tests (even if they do not pass), the
> documentation must explain how to run such binaries or tests for the target,
> using emulation if possible or dedicated hardware if necessary.
I tried to write some documentation on that.
> - Tier 3 targets must not impose burden on the authors of pull requests, or
> other developers in the community, to maintain the target. In particular,
> do not post comments (automated or manual) on a PR that derail or suggest a
> block on the PR based on a tier 3 target. Do not send automated messages or
> notifications (via any medium, including via ``@`)` to a PR author or others
> involved with a PR regarding a tier 3 target, unless they have opted into
> such messages.
> - Backlinks such as those generated by the issue/PR tracker when linking to
> an issue or PR are not considered a violation of this policy, within
> reason. However, such messages (even on a separate repository) must not
> generate notifications to anyone involved with a PR who has not requested
> such notifications.
Understood.
> - Patches adding or updating tier 3 targets must not break any existing tier 2
> or tier 1 target, and must not knowingly break another tier 3 target without
> approval of either the compiler team or the maintainers of the other tier 3
> target.
> - In particular, this may come up when working on closely related targets,
> such as variations of the same architecture with different features. Avoid
> introducing unconditional uses of features that another variation of the
> target may not have; use conditional compilation or runtime detection, as
> appropriate, to let each target run code supported by that target.
> - Tier 3 targets must be able to produce assembly using at least one of
> rustc's supported backends from any host target. (Having support in a fork
> of the backend is not sufficient, it must be upstream.)
Understood.
> If a tier 3 target stops meeting these requirements, or the target maintainers
> no longer have interest or time, or the target shows no signs of activity and
> has not built for some time, or removing the target would improve the quality
> of the Rust codebase, we may post a PR to remove it; any such PR will be CCed
> to the target maintainers (and potentially other people who have previously
> worked on the target), to check potential interest in improving the situation.
>
Understood.
r? compiler-team
Suggest Replacing Comma with Semicolon in Incorrect Repeat Expressions
Fixes#80173
This PR detects typos in repeat expressions like `["_", 10]` and `vec![String::new(), 10]` and suggests replacing comma with semicolon.
Also, improves code in other place by adding doc comments and making use of a helper function to check if a type implements `Clone`.
References:
1. For `vec![T; N]`: https://doc.rust-lang.org/std/macro.vec.html
2. For `[T; N]`: https://doc.rust-lang.org/std/primitive.array.html
We already did `Transmute`-then-`PtrToPtr`; this adds the nearly-identical `PtrToPtr`-then-`Transmute`.
It also adds `transmute(Foo(x))` → `transmute(x)`, when `Foo` is a single-field transparent type. That's useful for things like `NonNull { pointer: p }.as_ptr()`.
Found these as I was looking at MCP807-related changes.
There are a few locations where the crate name is checked against an
enumerated list of `std`, `core`, `alloc`, and `proc_macro`, or some
subset thereof. In most of these cases, all four crates should likely be
treated the same. Change this so the crates are listed in one place, and
that list is used wherever a list of `std` crates is needed.
`test` could be considered relevant in some of these cases, but
generally treating it separate from the others seems preferable while it
is unstable.
There are also a few places that Clippy will be able to use this.
Fuchsia explicitly builds rust and all rust targets with `-C
panic=abort` to minimize code generation size. However, when compiling a
proc-macro with this setting it can cause a warning to be emitted, which
breaks `tests/ui/invalid-compile-flags/crate-type-flag.rs`. This hasn't
been a problem in the past for us since we compile our proc macros on
host, rather than inside Fuchsia.
This attempts to fix the issue by explicitly requiring that we're using
the unwinder when compiling this test to avoid the warning being
emitted.
Fixes#135223
A couple simple borrowck cleanups
This PR has a couple simple renamings:
- it's been a long time since the mapping from `Location`s to `PointIndex`es was extracted from `RegionElements` into the `DenseLocationMap`, but only the types were renamed at the time. borrowck still refers to this map as `elements`. That's confusing, especially since sometimes we also use the mapping via `LivenessValues`, and makes more sense as `location_map` instead.
- to clarify `LocationTable` is not as general as it sounds, and is only for datalog polonius. In this branch I didn't rename the handful of `location_table` fields and params to `polonius_table`, but can do that to differentiate it even more from `location_map`. I did try it locally and it looks worthwhile, so if you'd prefer I can also push it here. (Or we could even switch these datalog types and fields to even more explicit names)
- to clarify the incomprehensible `AllFacts`, it is renamed to `PoloniusFacts`. These can be referred to as `facts` within the legacy polonius module, but as `polonius_facts` outside of it to make it clear that they're not about NLLs (nor are they about in-tree polonius but that'll be magically fixed when they're removed in the future)
r? `@matthewjasper`
Exhaustively handle expressions in patterns
We currently have this invariant in HIR that a `PatKind::Lit` or a `PatKind::Range` only contains
* `ExprKind::Lit`
* `ExprKind::UnOp(Neg, ExprKind::Lit)`
* `ExprKind::Path`
* `ExprKind::ConstBlock`
So I made `PatKind::Lit` and `PatKind::Range` stop containing `Expr`, and instead created a `PatLit` type whose `kind` enum only contains those variants.
The only place code got more complicated was in clippy, as it couldn't share as much anymore with `Expr` handling
It may be interesting on merging `ExprKind::{Path,Lit,ConstBlock}` in the future and using the same `PatLit` type (under a new name).
Then it should also be easier to eliminate any and all `UnOp(Neg, Lit) | Lit` matching that we have across the compiler. Some day we should fold the negation into the literal itself and just store it on the numeric literals