This code can sometimes witness malformed coverage attributes in builds that
are going to fail, so use `span_delayed_bug` to avoid an inappropriate ICE in
that case.
This code for recalculating `mcdc_bitmap_bytes` doesn't provide any benefit,
because its result won't have changed from the value in `FunctionCoverageInfo`
that was computed during the MIR instrumentation pass.
The payload of coverage statements was historically a structure with several
fields, so it was boxed to avoid bloating `StatementKind`.
Now that the payload is a single relatively-small enum, we can replace
`Box<Coverage>` with just `CoverageKind`.
This patch also adds a size assertion for `StatementKind`, to avoid
accidentally bloating it in the future.
This will allow MIR building to check whether a function is eligible for
coverage instrumentation, and avoid collecting branch coverage info if it is
not.
detects redundant imports that can be eliminated.
for #117772 :
In order to facilitate review and modification, split the checking code and
removing redundant imports code into two PR.
Previously, mappings were attached to individual coverage statements in MIR.
That necessitated special handling in MIR optimizations to avoid deleting those
statements, since otherwise codegen would be unable to reassemble the original
list of mappings.
With this change, a function's list of mappings is now attached to its MIR
body, and survives intact even if individual statements are deleted by
optimizations.
Coverage codegen can now allocate arrays based on the number of
counters/expressions originally used by the instrumentor.
The existing query that inspects coverage statements is still used for
determining the number of counters passed to `llvm.instrprof.increment`. If
some high-numbered counters were removed by MIR optimizations, the instrumented
binary can potentially use less memory and disk space at runtime.
Both of the coverage queries can now use this one helper function to iterate
over all of the `mir::Coverage` payloads in the statements of a `mir::Body`.
Operand types are now tracked explicitly, so there is no need to reserve ID 0
for the special always-zero counter.
As part of the renumbering, this change fixes an off-by-one error in the way
counters were counted by the `coverageinfo` query. As a result, functions
should now have exactly the number of counters they actually need, instead of
always having an extra counter that is never used.
Operand types are now tracked explicitly, so there is no need for expression
IDs to avoid counter IDs by descending from `u32::MAX`. Instead they can just
count up from 0, and can be used directly as indices when necessary.
Because the three kinds of operand are now distinguished explicitly, we no
longer need fiddly code to disambiguate counter IDs and expression IDs based on
the total number of counters/expressions in a function.
This does increase the size of operands from 4 bytes to 8 bytes, but that
shouldn't be a big deal since they are mostly stored inside boxed structures,
and the current coverage code is not particularly size-optimized anyway.
The issue here is that the logic used to determine which CGU to put the
dead function stubs in doesn't handle cases where a module is never
assigned to a CGU.
The partitioning logic also caused issues in #85461 where inline
functions were duplicated into multiple CGUs resulting in duplicate
symbols.
This commit fixes the issue by removing the complex logic used to assign
dead code stubs to CGUs and replaces it with a much simplier model: we
pick one CGU to hold all the dead code stubs. We pick a CGU which has
exported items which increases the likelihood the linker won't throw
away our dead functions and we pick the smallest to minimize the impact
on compilation times for crates with very large CGUs.
Fixes#86177Fixes#85718Fixes#79622
This one is a heavy `'tcx` user.
Two interesting ones:
This one had the `'tcx` declared on the function, despite the trait taking a `'tcx`:
```diff
-impl Visitor<'_> for UsedLocals {
+impl<'tcx> Visitor<'tcx> for UsedLocals {
fn visit_statement(&mut self, statement: &Statement<'tcx>, location: Location) {
```
This one use in-band for one, and underscore for the other:
```diff
-pub fn remove_dead_blocks(tcx: TyCtxt<'tcx>, body: &mut Body<'_>) {
+pub fn remove_dead_blocks<'tcx>(tcx: TyCtxt<'tcx>, body: &mut Body<'tcx>) {
```