Previously relro-level=off would just not tell the linker to use RELRO,
but when you want to disable RELRO you most likely want to entirely
prevent.
Signed-off-by: Johannes Löthberg <johannes@kyriasis.com>
This commit refactors how the path to the linker that we're going to invoke is
selected. Previously all targets listed *both* a `LinkerFlavor` and a `linker`
(path) option, but this meant that whenever you changed one you had to change
the other. The purpose of this commit is to avoid coupling these where possible.
Target specifications now only unconditionally define the *flavor* of the linker
that they're using by default. If not otherwise specified each flavor now
implies a particular default linker to run. As a result, this means that if
you'd like to test out `ld` for example you should be able to do:
rustc -Z linker-flavor=ld foo.rs
whereas previously you had to do
rustc -Z linker-flavor=ld -C linker=ld foo.rs
This will hopefully make it a bit easier to tinker around with variants that
should otherwise be well known to work, for example with LLD, `ld` on OSX, etc.
This commit imports the LLD project from LLVM to serve as the default linker for
the `wasm32-unknown-unknown` target. The `binaryen` submoule is consequently
removed along with "binaryen linker" support in rustc.
Moving to LLD brings with it a number of benefits for wasm code:
* LLD is itself an actual linker, so there's no need to compile all wasm code
with LTO any more. As a result builds should be *much* speedier as LTO is no
longer forcibly enabled for all builds of the wasm target.
* LLD is quickly becoming an "official solution" for linking wasm code together.
This, I believe at least, is intended to be the main supported linker for
native code and wasm moving forward. Picking up support early on should help
ensure that we can help LLD identify bugs and otherwise prove that it works
great for all our use cases!
* Improvements to the wasm toolchain are currently primarily focused around LLVM
and LLD (from what I can tell at least), so it's in general much better to be
on this bandwagon for bugfixes and new features.
* Historical "hacks" like `wasm-gc` will soon no longer be necessary, LLD
will [natively implement][gc] `--gc-sections` (better than `wasm-gc`!) which
means a postprocessor is no longer needed to show off Rust's "small wasm
binary size".
LLD is added in a pretty standard way to rustc right now. A new rustbuild target
was defined for building LLD, and this is executed when a compiler's sysroot is
being assembled. LLD is compiled against the LLVM that we've got in tree, which
means we're currently on the `release_60` branch, but this may get upgraded in
the near future!
LLD is placed into rustc's sysroot in a `bin` directory. This is similar to
where `gcc.exe` can be found on Windows. This directory is automatically added
to `PATH` whenever rustc executes the linker, allowing us to define a `WasmLd`
linker which implements the interface that `wasm-ld`, LLD's frontend, expects.
Like Emscripten the LLD target is currently only enabled for Tier 1 platforms,
notably OSX/Windows/Linux, and will need to be installed manually for compiling
to wasm on other platforms. LLD is by default turned off in rustbuild, and
requires a `config.toml` option to be enabled to turn it on.
Finally the unstable `#![wasm_import_memory]` attribute was also removed as LLD
has a native option for controlling this.
[gc]: https://reviews.llvm.org/D42511
When linking with gcc, run gcc -v to see if --enable-default-pie is
compiled in. If it is, pass -no-pie when necessary to disable pie.
Otherwise, pass -pie when necessary to enable it.
Fixes#48032 and fixes#35061
This commit adds a new target to the compiler: wasm32-unknown-unknown. This
target is a reimagining of what it looks like to generate WebAssembly code from
Rust. Instead of using Emscripten which can bring with it a weighty runtime this
instead is a target which uses only the LLVM backend for WebAssembly and a
"custom linker" for now which will hopefully one day be direct calls to lld.
Notable features of this target include:
* There is zero runtime footprint. The target assumes nothing exists other than
the wasm32 instruction set.
* There is zero toolchain footprint beyond adding the target. No custom linker
is needed, rustc contains everything.
* Very small wasm modules can be generated directly from Rust code using this
target.
* Most of the standard library is stubbed out to return an error, but anything
related to allocation works (aka `HashMap`, `Vec`, etc).
* Naturally, any `#[no_std]` crate should be 100% compatible with this new
target.
This target is currently somewhat janky due to how linking works. The "linking"
is currently unconditional whole program LTO (aka LLVM is being used as a
linker). Naturally that means compiling programs is pretty slow! Eventually
though this target should have a linker.
This target is also intended to be quite experimental. I'm hoping that this can
act as a catalyst for further experimentation in Rust with WebAssembly. Breaking
changes are very likely to land to this target, so it's not recommended to rely
on it in any critical capacity yet. We'll let you know when it's "production
ready".
---
Currently testing-wise this target is looking pretty good but isn't complete.
I've got almost the entire `run-pass` test suite working with this target (lots
of tests ignored, but many passing as well). The `core` test suite is still
getting LLVM bugs fixed to get that working and will take some time. Relatively
simple programs all seem to work though!
---
It's worth nothing that you may not immediately see the "smallest possible wasm
module" for the input you feed to rustc. For various reasons it's very difficult
to get rid of the final "bloat" in vanilla rustc (again, a real linker should
fix all this). For now what you'll have to do is:
cargo install --git https://github.com/alexcrichton/wasm-gc
wasm-gc foo.wasm bar.wasm
And then `bar.wasm` should be the smallest we can get it!
---
In any case for now I'd love feedback on this, particularly on the various
integration points if you've got better ideas of how to approach them!
Skip passing /natvis to lld-link until supported.
### Overview
Teaching rustc about MSVC's undocumented linker flag, /NATVIS, broke rustc's compatability with LLVM's `lld-link` frontend, as it does not recognize the flag. This pull request works around the problem by excluding `lld-link` by name. @retep998 discovered this regression.
### Possible Issues
- Other linkers that try to be compatible with the MSVC linker flavor may also be broken and in need of workarounds.
- Warning about the workaround may be overkill for a minor reduction in debug functionality.
- Depending on how long this workaround sticks around, it may eventually be preferred to version check `lld-link` instead of assuming all versions are incompatible.
### Relevant issues
* Broke in https://github.com/rust-lang/rust/pull/43221 Embed MSVC .natvis files into .pdbs and mangle debuginfo for &str, *T, and [T].
* LLVM patched in 27b9c42853 to ignore the flag instead of erroring.
r? @michaelwoerister
This is a big map that ends up inside of a `CrateContext` during translation for
all codegen units. This means that any change to the map may end up causing an
incremental recompilation of a codegen unit! In order to reduce the amount of
dependencies here between codegen units and the actual input crate this commit
refactors dealing with exported symbols and such into various queries.
The new queries are largely based on existing queries with filled out
implementations for the local crate in addition to external crates, but the main
idea is that while translating codegen untis no unit needs the entire set of
exported symbols, instead they only need queries about particulare `DefId`
instances every now and then.
The linking stage, however, still generates a full list of all exported symbols
from all crates, but that's going to always happen unconditionally anyway, so no
news there!
This commit moves the `collect_and_partition_translation_items` function into a
query on `TyCtxt` instead of a free function in trans, allowing us to track
dependencies and such of the function.
This commit moves the definition of the `ExportedSymbols` structure to the
`rustc` crate and then creates a query that'll be used to construct the
`ExportedSymbols` set. This in turn uses the reachablity query exposed in the
previous commit.
LLVM 5.0.0's lld-link frontend errors out if passed /natvis.
LLVM 6 (maybe earlier?) should at least ignore the flag.
Hopefully LLVM will eventually support the flag, at which point
this workaround can perhaps be simply removed, if 6? is old enough.
This commit adds logic to the compiler to attempt to handle super long linker
invocations by falling back to the `@`-file syntax if the invoked command is too
large. Each OS has a limit on how many arguments and how large the arguments can
be when spawning a new process, and linkers tend to be one of those programs
that can hit the limit!
The logic implemented here is to unconditionally attempt to spawn a linker and
then if it fails to spawn with an error from the OS that indicates the command
line is too big we attempt a fallback. The fallback is roughly the same for all
linkers where an argument pointing to a file, prepended with `@`, is passed.
This file then contains all the various arguments that we want to pass to the
linker.
Closes#41190
Embed MSVC .natvis files into .pdbs and mangle debuginfo for &str, *T, and [T].
No idea if these changes are reasonable - please feel free to suggest changes/rewrites. And these are some of my first real commits to any rust codebase - *don't* be gentle, and nitpick away, I need to learn! ;)
### Overview
Embedding `.natvis` files into `.pdb`s allows MSVC (and potentially other debuggers) to automatically pick up the visualizers without having to do any additional configuration (other than to perhaps add the relevant .pdb paths to symbol search paths.)
The native debug engine for MSVC parses the type names, making various C++ish assumptions about what they mean and adding various limitations to valid type names. `&str` cannot be matched against a visualizer, but if we emit `str&` instead, it'll be recognized as a reference to a `str`, solving the problem. `[T]` is similarly problematic, but emitting `slice<T>` instead works fine as it looks like a template. I've been unable to get e.g. `slice<u32>&` to match visualizers in VS2015u3, so I've gone with `str*` and `slice<u32>*` instead.
### Possible Issues
* I'm not sure if `slice<T>` is a great mangling for `[T]` or if I should worry about name collisions.
* I'm not sure if `linker.rs` is the right place to be enumerating natvis files.
* I'm not sure if these type name mangling changes should actually be MSVC specific. I recall seeing gdb visualizer tests that might be broken if made more general? I'm hesitant to mess with them without a gdb install. But perhaps I'm just wracking up technical debt.
Should I try `pacman -S mingw-w64-x86_64-gdb` and to make things consistent?
* I haven't touched `const` / `mut` yet, and I'm worried MSVC might trip up on `mut` or their placement.
* I may like terse oneliners too much.
* I don't know if there's broader implications for messing with debug type names here.
* I may have been mistaken about bellow test failures being ignorable / unrelated to this changelist.
### Test Failures on `x86_64-pc-windows-gnu`
```
---- [debuginfo-gdb] debuginfo-gdb\associated-types.rs stdout ----
thread '[debuginfo-gdb] debuginfo-gdb\associated-types.rs' panicked at 'gdb not available but debuginfo gdb debuginfo test requested', src\tools\compiletest\src\runtest.rs:48:16
note: Run with `RUST_BACKTRACE=1` for a backtrace.
[...identical panic causes omitted...]
---- [debuginfo-gdb] debuginfo-gdb\vec.rs stdout ----
thread '[debuginfo-gdb] debuginfo-gdb\vec.rs' panicked at 'gdb not available but debuginfo gdb debuginfo test requested', src\tools\compiletest\src\runtest.rs:48:16
```
### Relevant Issues
* https://github.com/rust-lang/rust/issues/40460 Metaissue for Visual Studio debugging Rust
* https://github.com/rust-lang/rust/issues/36503 Investigate natvis for improved msvc debugging
* https://github.com/PistonDevelopers/VisualRust/issues/160 Debug visualization of Rust data structures
### Pretty Pictures


trans: Internalize symbols without relying on LLVM
This PR makes the compiler use the information gather by the trans collector in order to determine which symbols/trans-items can be made internal. This has the advantages:
+ of being LLVM independent,
+ of also working in incremental mode, and
+ of allowing to not keep all LLVM modules in memory at the same time.
This is in preparation for fixing issue #39280.
cc @rust-lang/compiler
This patch adds a `-Z linker-flavor` flag to rustc which can be used to invoke
the linker using a different interface.
For example, by default rustc assumes that all the Linux targets will be linked
using GCC. This makes it impossible to use LLD as a linker using just `-C
linker=ld.lld` because that will invoke LLD with invalid command line
arguments. (e.g. rustc will pass -Wl,--gc-sections to LLD but LLD doesn't
understand that; --gc-sections would be the right argument)
With this patch one can pass `-Z linker-flavor=ld` to rustc to invoke the linker
using a LD-like interface. This way, `rustc -C linker=ld.lld -Z
linker-flavor=ld` will invoke LLD with the right arguments.
`-Z linker-flavor` accepts 4 different arguments: `em` (emcc), `ld`,
`gcc`, `msvc` (link.exe). `em`, `gnu` and `msvc` cover all the existing linker
interfaces. `ld` is a new flavor for interfacing GNU's ld and LLD.
This patch also changes target specifications. `linker-flavor` is now a
mandatory field that specifies the *default* linker flavor that the target will
use. This change also makes the linker interface *explicit*; before, it used to
be derived from other fields like linker-is-gnu, is-like-msvc,
is-like-emscripten, etc.
Another change to target specifications is that the fields `pre-link-args`,
`post-link-args` and `late-link-args` now expect a map from flavor to linker
arguments.
``` diff
- "pre-link-args": ["-Wl,--as-needed", "-Wl,-z,-noexecstack"],
+ "pre-link-args": {
+ "gcc": ["-Wl,--as-needed", "-Wl,-z,-noexecstack"],
+ "ld": ["--as-needed", "-z,-noexecstack"],
+ },
```
[breaking-change] for users of custom targets specifications
It claims to accept most GNU linker options, but in fact most of them
have no effect and instead it requires some special options which are
easier to handle in a separate trait.
Currently added:
- `export_symbols`: works on executables as special Emscripten case
since staticlibs/dylibs aren't compiled to JS, while exports are
required to be accessible from JS.
Fixes#39171.
- `optimize` - translates Rust's optimization level to Emscripten
optimization level (whether passed via `-C opt-level=...` or `-O...`).
Fixes#36899.
- `debuginfo` - translates debug info; Emscripten has 5 debug levels
while Rust has 3, so chose to translate `-C debuginfo=1` to `-g3`
(preserves whitespace, variable and function names for easy debugging).
Fixes#36901.
- `no_default_libraries` - tells Emscripten to exlude `memcpy` and co.
Currently libraries installed by rustbuild on OSX have an incorrect
`LC_ID_DYLIB` directive located in the dynamic libraries that are
installed. The directive we expect looks like:
@rpath/libstd.dylib
Which means that if you want to find that dynamic library you should
look at the dylib's other `@rpath` directives. Typically our `@rpath`
directives look like `@loader_path/../lib` for the compiler as that's
where the installed libraries will be located. Currently, though,
rustbuild produces dylibs with the directive that looks like:
/Users/rustbuild/src/rust-buildbot/slave/nightly-dist-rustc-mac/build/build/x86_64-apple-darwin/stage1-std/x86_64-apple-darwin/release/deps/libstd-713ad88203512705.dylib
In other words, the build directory is encoded erroneously. The compiler
already [knows how] to change this directive, but it only passes that
argument when `-C rpath` is also passed. The rustbuild system, however,
explicitly [does not pass] this option explicitly and instead bakes its
own. This logic then also erroneously didn't pass `-Wl,-install_name`
like the compiler.
[knows how]: 4a008cccaa/src/librustc_trans/back/linker.rs (L210-L214)
[does not pass]: 4a008cccaa/src/bootstrap/bin/rustc.rs (L133-L158)
To fix this regression this patch introduces a new `-Z` flag, `-Z
osx-rpath-install-name` which basically just forces the compiler to take
the previous `-install_name` branch when creating a dynamic library.
Hopefully we can sort out a better rpath story in the future, but for
now this "hack" should suffice in getting our nightly builds back to the
same state as before.
Closes#38430
Don't apply msvc link opts for non-opt build
`/OPT:REF,ICF` sometimes takes lots of time. It makes no sense to apply them when doing debug build. MSVC's linker by default disables these optimizations when `/DEBUG` is specified, unless they are explicitly passed.
This commit is an implementation of [RFC 1665] which adds support for the
`#![windows_subsystem]` attribute. This attribute allows specifying either the
"windows" or "console" subsystems on Windows to the linker.
[RFC 1665]: https://github.com/rust-lang/rfcs/blob/master/text/1665-windows-subsystem.md
Previously all Rust executables were compiled as the "console" subsystem which
meant that if you wanted a graphical application it would erroneously pop up a
console whenever opened. When compiling an application, however, this is
undesired behavior and the "windows" subsystem is used instead to have control
over user interactions.
This attribute is validated, but ignored on all non-Windows platforms.
cc #37499
This commit blanket renames the `rustc_macro` infrastructure to `proc_macro`,
which reflects the general consensus of #35900. A follow up PR to Cargo will be
required to purge the `rustc-macro` name as well.
This commit is an implementation of [RFC 1681] which adds support to the
compiler for first-class user-define custom `#[derive]` modes with a far more
stable API than plugins have today.
[RFC 1681]: https://github.com/rust-lang/rfcs/blob/master/text/1681-macros-1.1.md
The main features added by this commit are:
* A new `rustc-macro` crate-type. This crate type represents one which will
provide custom `derive` implementations and perhaps eventually flower into the
implementation of macros 2.0 as well.
* A new `rustc_macro` crate in the standard distribution. This crate will
provide the runtime interface between macro crates and the compiler. The API
here is particularly conservative right now but has quite a bit of room to
expand into any manner of APIs required by macro authors.
* The ability to load new derive modes through the `#[macro_use]` annotations on
other crates.
All support added here is gated behind the `rustc_macro` feature gate, both for
the library support (the `rustc_macro` crate) as well as the language features.
There are a few minor differences from the implementation outlined in the RFC,
such as the `rustc_macro` crate being available as a dylib and all symbols are
`dlsym`'d directly instead of having a shim compiled. These should only affect
the implementation, however, not the public interface.
This commit also ended up touching a lot of code related to `#[derive]`, making
a few notable changes:
* Recognized derive attributes are no longer desugared to `derive_Foo`. Wasn't
sure how to keep this behavior and *not* expose it to custom derive.
* Derive attributes no longer have access to unstable features by default, they
have to opt in on a granular level.
* The `derive(Copy,Clone)` optimization is now done through another "obscure
attribute" which is just intended to ferry along in the compiler that such an
optimization is possible. The `derive(PartialEq,Eq)` optimization was also
updated to do something similar.
---
One part of this PR which needs to be improved before stabilizing are the errors
and exact interfaces here. The error messages are relatively poor quality and
there are surprising spects of this such as `#[derive(PartialEq, Eq, MyTrait)]`
not working by default. The custom attributes added by the compiler end up
becoming unstable again when going through a custom impl.
Hopefully though this is enough to start allowing experimentation on crates.io!
syntax-[breaking-change]
This commit is an implementation of [RFC 1510] which adds a new crate type,
`cdylib`, to the compiler. This new crate type differs from the existing `dylib`
crate type in a few key ways:
* No metadata is present in the final artifact
* Symbol visibility rules are the same as executables, that is only reachable
`extern` functions are visible symbols
* LTO is allowed
* All libraries are always linked statically
This commit is relatively simple by just plubming the compiler with another
crate type which takes different branches here and there. The only major change
is an implementation of the `Linker::export_symbols` function on Unix which now
actually does something. This helps restrict the public symbols from a cdylib on
Unix.
With this PR a "hello world" `cdylib` is 7.2K while the same `dylib` is 2.4MB,
which is some nice size savings!
[RFC 1510]: https://github.com/rust-lang/rfcs/pull/1510Closes#33132
As discussed in
https://github.com/rust-lang/rust/pull/32293#issuecomment-200597130,
adding link guards are a heuristic that is causing undue complications:
- the link guards inject extra public symbols, which is not always OK.
- link guards as implemented could be a non-trivial performance hit,
because no attempt is made to "de-duplicate" the dependency graph,
so at worst you have O(N!) calls to the link guard functions.
Nonetheless, link guards are very helpful in detecting errors, so it may
be worth adding them back in some modified form in the future.
We want to prevent compiling something against one version
of a dynamic library and then, at runtime accidentally
using a different version of the dynamic library. With the
old symbol-naming scheme this could not happen because every
symbol had the SVH in it and you'd get an error by the
dynamic linker when using the wrong version of a dylib. With
the new naming scheme this isn't the case any more, so this
patch adds the "link-guard" to prevent this error case.
This is implemented as follows:
- In every crate that we compile, we emit a function called
"__rustc_link_guard_<crate-name>_<crate-svh>"
- The body of this function contains calls to the
"__rustc_link_guard" functions of all dependencies.
- An executable contains a call to it's own
"__rustc_link_guard" function.
As a consequence the "__rustc_link_guard" function call graph
mirrors the crate graph and the dynamic linker will fail if a
wrong dylib is loaded somewhere because its
"__rustc_link_guard" function will contain a different SVH in
its name.
Automated conversion using the untry tool [1] and the following command:
```
$ find -name '*.rs' -type f | xargs untry
```
at the root of the Rust repo.
[1]: https://github.com/japaric/untry