Remove the "which is required by `{root_obligation}`" post-script in
"the trait `X` is not implemented for `Y`" explanation in E0277. This
information is already conveyed in the notes explaining requirements,
making it redundant while making the text (particularly in labels)
harder to read.
```
error[E0277]: the trait bound `NotCopy: Copy` is not satisfied
--> $DIR/wf-static-type.rs:10:13
|
LL | static FOO: IsCopy<Option<NotCopy>> = IsCopy { t: None };
| ^^^^^^^^^^^^^^^^^^^^^^^ the trait `Copy` is not implemented for `NotCopy`
|
= note: required for `Option<NotCopy>` to implement `Copy`
note: required by a bound in `IsCopy`
--> $DIR/wf-static-type.rs:7:17
|
LL | struct IsCopy<T:Copy> { t: T }
| ^^^^ required by this bound in `IsCopy`
```
vs the prior
```
error[E0277]: the trait bound `NotCopy: Copy` is not satisfied
--> $DIR/wf-static-type.rs:10:13
|
LL | static FOO: IsCopy<Option<NotCopy>> = IsCopy { t: None };
| ^^^^^^^^^^^^^^^^^^^^^^^ the trait `Copy` is not implemented for `NotCopy`, which is required by `Option<NotCopy>: Copy`
|
= note: required for `Option<NotCopy>` to implement `Copy`
note: required by a bound in `IsCopy`
--> $DIR/wf-static-type.rs:7:17
|
LL | struct IsCopy<T:Copy> { t: T }
| ^^^^ required by this bound in `IsCopy`
```
Hack out effects support for old solver
Opening this for vibes ✨
Turns out that a basic, somewhat incomplete implementation of host effects is achievable in the old trait solver pretty easily. This should be sufficient for us to use in the standard library itself.
Regarding incompleteness, maybe we should always treat host predicates as ambiguous in intercrate mode (at least in the old solver) to avoid any worries about accidental impl overlap or something.
r? ```@lcnr``` cc ```@fee1-dead```
Lint against getting pointers from immediately dropped temporaries
Fixes#123613
## Changes:
1. New lint: `dangling_pointers_from_temporaries`. Is a generalization of `temporary_cstring_as_ptr` for more types and more ways to get a temporary.
2. `temporary_cstring_as_ptr` is removed and marked as renamed to `dangling_pointers_from_temporaries`.
3. `clippy::temporary_cstring_as_ptr` is marked as renamed to `dangling_pointers_from_temporaries`.
4. Fixed a false positive[^fp] for when the pointer is not actually dangling because of lifetime extension for function/method call arguments.
5. `core::cell::Cell` is now `rustc_diagnostic_item = "Cell"`
## Questions:
- [ ] Instead of manually checking for a list of known methods and diagnostic items, maybe add some sort of annotation to those methods in library and check for the presence of that annotation? https://github.com/rust-lang/rust/pull/128985#issuecomment-2318714312
## Known limitations:
### False negatives[^fn]:
See the comments in `compiler/rustc_lint/src/dangling.rs`
1. Method calls that are not checked for:
- `temporary_unsafe_cell.get()`
- `temporary_sync_unsafe_cell.get()`
2. Ways to get a temporary that are not recognized:
- `owning_temporary.field`
- `owning_temporary[index]`
3. No checks for ref-to-ptr conversions:
- `&raw [mut] temporary`
- `&temporary as *(const|mut) _`
- `ptr::from_ref(&temporary)` and friends
[^fn]: lint **should** be emitted, but **is not**
[^fp]: lint **should not** be emitted, but **is**
Fundamentally, we have *three* disjoint categories of functions:
1. const-stable functions
2. private/unstable functions that are meant to be callable from const-stable functions
3. functions that can make use of unstable const features
This PR implements the following system:
- `#[rustc_const_stable]` puts functions in the first category. It may only be applied to `#[stable]` functions.
- `#[rustc_const_unstable]` by default puts functions in the third category. The new attribute `#[rustc_const_stable_indirect]` can be added to such a function to move it into the second category.
- `const fn` without a const stability marker are in the second category if they are still unstable. They automatically inherit the feature gate for regular calls, it can now also be used for const-calls.
Also, several holes in recursive const stability checking are being closed.
There's still one potential hole that is hard to avoid, which is when MIR
building automatically inserts calls to a particular function in stable
functions -- which happens in the panic machinery. Those need to *not* be
`rustc_const_unstable` (or manually get a `rustc_const_stable_indirect`) to be
sure they follow recursive const stability. But that's a fairly rare and special
case so IMO it's fine.
The net effect of this is that a `#[unstable]` or unmarked function can be
constified simply by marking it as `const fn`, and it will then be
const-callable from stable `const fn` and subject to recursive const stability
requirements. If it is publicly reachable (which implies it cannot be unmarked),
it will be const-unstable under the same feature gate. Only if the function ever
becomes `#[stable]` does it need a `#[rustc_const_unstable]` or
`#[rustc_const_stable]` marker to decide if this should also imply
const-stability.
Adding `#[rustc_const_unstable]` is only needed for (a) functions that need to
use unstable const lang features (including intrinsics), or (b) `#[stable]`
functions that are not yet intended to be const-stable. Adding
`#[rustc_const_stable]` is only needed for functions that are actually meant to
be directly callable from stable const code. `#[rustc_const_stable_indirect]` is
used to mark intrinsics as const-callable and for `#[rustc_const_unstable]`
functions that are actually called from other, exposed-on-stable `const fn`. No
other attributes are required.
Some float methods are now `const fn` under the `const_float_methods` feature gate.
In order to support `min`, `max`, `abs` and `copysign`, the implementation of some intrinsics had to be moved from Miri to rustc_const_eval.
Add tests for some old fixed issues
Closes#30867Closes#30472Closes#28994Closes#26719 (and migrates the relevant test to the new run-make)
Closes#23600
cc `@jieyouxu` for the run-make-support changes
try-job: x86_64-msvc
liballoc: introduce String, Vec const-slicing
This change `const`-qualifies many methods on `Vec` and `String`, notably `as_slice`, `as_str`, `len`. These changes are made behind the unstable feature flag `const_vec_string_slice`.
## Motivation
This is to support simultaneous variance over ownership and constness. I have an enum type that may contain either `String` or `&str`, and I want to produce a `&str` from it in a possibly-`const` context.
```rust
enum StrOrString<'s> {
Str(&'s str),
String(String),
}
impl<'s> StrOrString<'s> {
const fn as_str(&self) -> &str {
match self {
// In a const-context, I really only expect to see this variant, but I can't switch the implementation
// in some mode like #[cfg(const)] -- there has to be a single body
Self::Str(s) => s,
// so this is a problem, since it's not `const`
Self::String(s) => s.as_str(),
}
}
}
```
Currently `String` and `Vec` don't support this, but can without functional changes. Similar logic applies for `len`, `capacity`, `is_empty`.
## Changes
The essential thing enabling this change is that `Unique::as_ptr` is `const`. This lets us convert `RawVec::ptr` -> `Vec::as_ptr` -> `Vec::as_slice` -> `String::as_str`.
I had to move the `Deref` implementations into `as_{str,slice}` because `Deref` isn't `#[const_trait]`, but I would expect this change to be invisible up to inlining. I moved the `DerefMut` implementations as well for uniformity.
This change `const`-qualifies many methods on Vec and String, notably
`as_slice`, `as_str`, `len`. These changes are made behind the unstable
feature flag `const_vec_string_slice` with the following tracking issue:
https://github.com/rust-lang/rust/issues/129041
make ptr metadata functions callable from stable const fn
So far this was done with a bunch of `rustc_allow_const_fn_unstable`. But those should be the exception, not the norm. If we are confident we can expose the ptr metadata APIs *indirectly* in stable const fn, we should just mark them as `rustc_const_stable`. And we better be confident we can do that since it's already been done a while ago. ;)
In particular this marks two intrinsics as const-stable: `aggregate_raw_ptr`, `ptr_metadata`. This should be uncontroversial, they are trivial to implement in the interpreter.
Cc `@rust-lang/wg-const-eval` `@rust-lang/lang`
Rename a few tests to make tidy happier
A somewhat random smattering of tests that I have recently looked at, and thus had cause to research and write down the reason for their existence.
Prevent Deduplication of `LongRunningWarn`
Fixes#118612
As mention in the issue, `LongRunningWarn` is meant to be repeated multiple times.
Therefore, this PR stores a unique number in every instance of `LongRunningWarn` so that it's not hashed into the same value and omitted by the deduplication mechanism.
interpret, miri: fix dealing with overflow during slice indexing and allocation
This is mostly to fix https://github.com/rust-lang/rust/issues/130284.
I then realized we're using somewhat sketchy arguments for a similar multiplication in `copy`/`copy_nonoverlapping`/`write_bytes`, so I made them all share the same function that checks exactly the right thing. (The intrinsics would previously fail on allocations larger than `1 << 47` bytes... which are theoretically possible maybe? Anyway it seems conceptually wrong to use any other bound than `isize::MAX` here.)
stabilize `const_extern_fn`
closes https://github.com/rust-lang/rust/issues/64926
tracking issue: https://github.com/rust-lang/rust/issues/64926
reference PR: https://github.com/rust-lang/reference/pull/1596
## Stabilizaton Report
### Summary
Using `const extern "Rust"` and `const extern "C"` was already stabilized (since version 1.62.0, see https://github.com/rust-lang/rust/pull/95346). This PR stabilizes the other calling conventions: it is now possible to write `const unsafe extern "calling-convention" fn` and `const extern "calling-convention" fn` for any supported calling convention:
```rust
const extern "C-unwind" fn foo1(val: u8) -> u8 { val + 1}
const extern "stdcall" fn foo2(val: u8) -> u8 { val + 1}
const unsafe extern "C-unwind" fn bar1(val: bool) -> bool { !val }
const unsafe extern "stdcall" fn bar2(val: bool) -> bool { !val }
```
This can be used to const-ify an `extern fn`, or conversely, to make a `const fn` callable from external code.
r? T-lang
cc `@RalfJung`
const-eval interning: accept interior mutable pointers in final value
…but keep rejecting mutable references
This fixes https://github.com/rust-lang/rust/issues/121610 by no longer firing the lint when there is a pointer with interior mutability in the final value of the constant. On stable, such pointers can be created with code like:
```rust
pub enum JsValue {
Undefined,
Object(Cell<bool>),
}
impl Drop for JsValue {
fn drop(&mut self) {}
}
// This does *not* get promoted since `JsValue` has a destructor.
// However, the outer scope rule applies, still giving this 'static lifetime.
const UNDEFINED: &JsValue = &JsValue::Undefined;
```
It's not great to accept such values since people *might* think that it is legal to mutate them with unsafe code. (This is related to how "infectious" `UnsafeCell` is, which is a [wide open question](https://github.com/rust-lang/unsafe-code-guidelines/issues/236).) However, we [explicitly document](https://doc.rust-lang.org/reference/behavior-considered-undefined.html) that things created by `const` are immutable. Furthermore, we also accept the following even more questionable code without any lint today:
```rust
let x: &'static Option<Cell<i32>> = &None;
```
This is even more questionable since it does *not* involve a `const`, and yet still puts the data into immutable memory. We could view this as promotion [potentially introducing UB](https://github.com/rust-lang/unsafe-code-guidelines/issues/493). However, we've accepted this since ~forever and it's [too late to reject this now](https://github.com/rust-lang/rust/pull/122789); the pattern is just too useful.
So basically, if you think that `UnsafeCell` should be tracked fully precisely, then you should want the lint we currently emit to be removed, which this PR does. If you think `UnsafeCell` should "infect" surrounding `enum`s, the big problem is really https://github.com/rust-lang/unsafe-code-guidelines/issues/493 which does not trigger the lint -- the cases the lint triggers on are actually the "harmless" ones as there is an explicit surrounding `const` explaining why things end up being immutable.
What all this goes to show is that the hard error added in https://github.com/rust-lang/rust/pull/118324 (later turned into the future-compat lint that I am now suggesting we remove) was based on some wrong assumptions, at least insofar as it concerns shared references. Furthermore, that lint does not help at all for the most problematic case here where the potential UB is completely implicit. (In fact, the lint is actively in the way of [my preferred long-term strategy](https://github.com/rust-lang/unsafe-code-guidelines/issues/493#issuecomment-2028674105) for dealing with this UB.) So I think we should go back to square one and remove that error/lint for shared references. For mutable references, it does seem to work as intended, so we can keep it. Here it serves as a safety net in case the static checks that try to contain mutable references to the inside of a const initializer are not working as intended; I therefore made the check ICE to encourage users to tell us if that safety net is triggered.
Closes https://github.com/rust-lang/rust/issues/122153 by removing the lint.
Cc `@rust-lang/opsem` `@rust-lang/lang`