Link impl items to corresponding trait items in late resolver.
Hygienically linking trait impl items to declarations in the trait can be done directly by the late resolver. In fact, it is already done to diagnose unknown items.
This PR uses this resolution work and stores the `DefId` of the trait item in the HIR. This avoids having to do this resolution manually later.
r? `@matthewjasper`
Related to #90639. The added `trait_item_id` field can be moved to `ImplItemRef` to be used directly by your PR.
Mak DefId to AccessLevel map in resolve for export
hir_id to accesslevel in resolve and applied in privacy
using local def id
removing tracing probes
making function not recursive and adding comments
Move most of Exported/Public res to rustc_resolve
moving public/export res to resolve
fix missing stability attributes in core, std and alloc
move code to access_levels.rs
return for some kinds instead of going through them
Export correctness, macro changes, comments
add comment for import binding
add comment for import binding
renmae to access level visitor, remove comments, move fn as closure, remove new_key
fmt
fix rebase
fix rebase
fmt
fmt
fix: move macro def to rustc_resolve
fix: reachable AccessLevel for enum variants
fmt
fix: missing stability attributes for other architectures
allow unreachable pub in rustfmt
fix: missing impl access level + renaming export to reexport
Missing impl access level was found thanks to a test in clippy
Remove `SymbolStr`
This was originally proposed in https://github.com/rust-lang/rust/pull/74554#discussion_r466203544. As well as removing the icky `SymbolStr` type, it allows the removal of a lot of `&` and `*` occurrences.
Best reviewed one commit at a time.
r? `@oli-obk`
`Resolver::next_node_id` converts a `u32` to a `usize` (which is
possibly bigger), does a checked add, and then converts the result back
to a `u32`. The `usize` conversion completely subverts the checked add!
This commit removes the conversion to/from `usize`.
Emit description of the ambiguity as a note.
Co-authored-by: Noah Lev <camelidcamel@gmail.com>
Co-authored-by: Vadim Petrochenkov <vadim.petrochenkov@gmail.com>
resolve: Use `NameBinding` for local variables and generic parameters
`NameBinding` is a structure used for representing any name introduction (an item, or import, or even a built-in).
Except that local variables and generic parameters weren't represented as `NameBinding`s, for this reason they requires separate paths in name resolution code in several places.
This PR introduces `NameBinding`s for local variables as well and simplifies all the code working with them leaving only the `NameBinding` paths.
Adopt let_else across the compiler
This performs a substitution of code following the pattern:
```
let <id> = if let <pat> = ... { identity } else { ... : ! };
```
To simplify it to:
```
let <pat> = ... { identity } else { ... : ! };
```
By adopting the `let_else` feature (cc #87335).
The PR also updates the syn crate because the currently used version of the crate doesn't support `let_else` syntax yet.
Note: Generally I'm the person who *removes* usages of unstable features from the compiler, not adds more usages of them, but in this instance I think it hopefully helps the feature get stabilized sooner and in a better state. I have written a [comment](https://github.com/rust-lang/rust/issues/87335#issuecomment-944846205) on the tracking issue about my experience and what I feel could be improved before stabilization of `let_else`.
Index and hash HIR as part of lowering
Part of https://github.com/rust-lang/rust/pull/88186
~Based on https://github.com/rust-lang/rust/pull/88880 (see merge commit).~
Once HIR is lowered, it is later indexed by the `index_hir` query and hashed for `crate_hash`. This PR moves those post-processing steps to lowering itself. As a side objective, the HIR crate data structure is refactored as an `IndexVec<LocalDefId, Option<OwnerInfo<'hir>>>` where `OwnerInfo` stores all the relevant information for an HIR owner.
r? `@michaelwoerister`
cc `@petrochenkov`
This performs a substitution of code following the pattern:
let <id> = if let <pat> = ... { identity } else { ... : ! };
To simplify it to:
let <pat> = ... { identity } else { ... : ! };
By adopting the let_else feature.
avoid suggesting the same name
sort candidates
fix a message
use `opt_def_id` instead of `def_id`
move `find_similarly_named_module_or_crate` to rustc_resolve/src/diagnostics.rs
It was previously cached for modules loaded from `fn get_module`, but not for modules loaded from `fn build_reduced_graph_for_external_crate_res`.
This also makes all foreign modules use their real parent, span and expansion instead of possibly a parent/span/expansion of their reexport.
An ICE happening on attempt to decode expansions for foreign enums and traits is avoided.
Also local enums and traits are now added to the module map.
Cleanup lower_generics_mut and make span be the bound itself
Closes#86298 (supersedes those changes)
r? `@cjgillot` since you reviewed the other PR
(Used wrong branch for #89338)
Do not suggest importing inaccessible items
Fixes#88472. For this example:
```rust
mod a {
struct Foo;
}
mod b {
type Bar = Foo;
}
```
rustc currently emits:
```
error[E0412]: cannot find type `Foo` in this scope
--> test.rs:6:16
|
6 | type Bar = Foo;
| ^^^ not found in this scope
|
help: consider importing this struct
|
6 | use a::Foo;
|
```
this is incorrect, as applying this suggestion leads to
```
error[E0603]: struct `Foo` is private
--> test.rs:6:12
|
6 | use a::Foo;
| ^^^ private struct
|
note: the struct `Foo` is defined here
--> test.rs:2:5
|
2 | struct Foo;
| ^^^^^^^^^^^
```
With my changes, I get:
```
error[E0412]: cannot find type `Foo` in this scope
--> test.rs:6:16
|
6 | type Bar = Foo;
| ^^^ not found in this scope
|
= note: this struct exists but is inaccessible:
a::Foo
```
As for the wildcard mentioned in #88472, I would argue that the warning is actually correct, since the import _is_ unused. I think the real issue is the wrong suggestion, which I have fixed here.
Suggest similarly named associated items in trait impls
Fix#85942
Previously, the compiler didn't suggest similarly named associated items unlike we do in many situations. This patch adds such diagnostics for associated functions, types, and constants.
Previously, the compiler didn't suggest similarly named associated items
unlike we do in many situations. This patch adds such diagnostics for
associated functions, types and constants.
The `Option<Module>` version is supported for the case where we don't know whether the `DefId` refers to a module or not.
Non-local traits and enums are also correctly found now.