CloudABI uses LLVM's libunwind for stack unwinding. There was a small
bug that went by unnoticed, namely that it was not built with -fno-rtti.
This caused it to (indirectly) depend on the entire C++ runtime.
Now that that issue has been resolved, it is also perfectly fine to make
use of this library for programming languages other than C++.
This commit adds a new target to the compiler: wasm32-unknown-unknown. This
target is a reimagining of what it looks like to generate WebAssembly code from
Rust. Instead of using Emscripten which can bring with it a weighty runtime this
instead is a target which uses only the LLVM backend for WebAssembly and a
"custom linker" for now which will hopefully one day be direct calls to lld.
Notable features of this target include:
* There is zero runtime footprint. The target assumes nothing exists other than
the wasm32 instruction set.
* There is zero toolchain footprint beyond adding the target. No custom linker
is needed, rustc contains everything.
* Very small wasm modules can be generated directly from Rust code using this
target.
* Most of the standard library is stubbed out to return an error, but anything
related to allocation works (aka `HashMap`, `Vec`, etc).
* Naturally, any `#[no_std]` crate should be 100% compatible with this new
target.
This target is currently somewhat janky due to how linking works. The "linking"
is currently unconditional whole program LTO (aka LLVM is being used as a
linker). Naturally that means compiling programs is pretty slow! Eventually
though this target should have a linker.
This target is also intended to be quite experimental. I'm hoping that this can
act as a catalyst for further experimentation in Rust with WebAssembly. Breaking
changes are very likely to land to this target, so it's not recommended to rely
on it in any critical capacity yet. We'll let you know when it's "production
ready".
---
Currently testing-wise this target is looking pretty good but isn't complete.
I've got almost the entire `run-pass` test suite working with this target (lots
of tests ignored, but many passing as well). The `core` test suite is still
getting LLVM bugs fixed to get that working and will take some time. Relatively
simple programs all seem to work though!
---
It's worth nothing that you may not immediately see the "smallest possible wasm
module" for the input you feed to rustc. For various reasons it's very difficult
to get rid of the final "bloat" in vanilla rustc (again, a real linker should
fix all this). For now what you'll have to do is:
cargo install --git https://github.com/alexcrichton/wasm-gc
wasm-gc foo.wasm bar.wasm
And then `bar.wasm` should be the smallest we can get it!
---
In any case for now I'd love feedback on this, particularly on the various
integration points if you've got better ideas of how to approach them!
This commit removes a few calls to panic and/or assert in `rust_eh_personality`.
This function definitely can't itself panic (that'd probably segfault or do
something else weird) and I was also noticing that a `pub extern fn foo() {}`
cdylib was abnormally large. Turns out all that size was the panicking machinery
brought in by the personality function!
The change here is to return a `Result` internally so we can bubble up the fatal
error, eventually translating to the appropriate error code for the libunwind
ABI.
Remove not(stage0) from deny(warnings)
Historically this was done to accommodate bugs in lints, but there hasn't been a
bug in a lint since this feature was added which the warnings affected. Let's
completely purge warnings from all our stages by denying warnings in all stages.
This will also assist in tracking down `stage0` code to be removed whenever
we're updating the bootstrap compiler.
Historically this was done to accommodate bugs in lints, but there hasn't been a
bug in a lint since this feature was added which the warnings affected. Let's
completely purge warnings from all our stages by denying warnings in all stages.
This will also assist in tracking down `stage0` code to be removed whenever
we're updating the bootstrap compiler.
The `mipsel` `target_arch` was introduced with the initial MIPSel
support (rust-lang/rust@82ec1aef29),
but was subsequently removed with implementation of the Flexible Target
Specification (Rust RFC 0131,
rust-lang/rust@3a8f4ec32a).
This is the only remaining instance in rustc. All others are in the libc
repo, and are fixed in rust-lang/libc@b3676593f6.
This involves hacking the code used to run cargo test on various
packages, because it reads Cargo.lock to determine which packages should
be tested. This change implements a blacklist, since that will catch new
crates when they are added in the future.
This adds support for building the Rust compiler and standard
library for s390x-linux, allowing a full cross-bootstrap sequence
to complete. This includes:
- Makefile/configure changes to allow native s390x builds
- Full Rust compiler support for the s390x C ABI
(only the non-vector ABI is supported at this point)
- Port of the standard library to s390x
- Update the liblibc submodule to a version including s390x support
- Testsuite fixes to allow clean "make check" on s390x
Caveats:
- Resets base cpu to "z10" to bring support in sync with the default
behaviour of other compilers on the platforms. (Usually, upstream
supports all older processors; a distribution build may then chose
to require a more recent base version.) (Also, using zEC12 causes
failures in the valgrind tests since valgrind doesn't fully support
this CPU yet.)
- z13 vector ABI is not yet supported. To ensure compatible code
generation, the -vector feature is passed to LLVM. Note that this
means that even when compiling for z13, no vector instructions
will be used. In the future, support for the vector ABI should be
added (this will require common code support for different ABIs
that need different data_layout strings on the same platform).
- Two test cases are (temporarily) ignored on s390x to allow passing
the test suite. The underlying issues still need to be fixed:
* debuginfo/simd.rs fails because of incorrect debug information.
This seems to be a LLVM bug (also seen with C code).
* run-pass/union/union-basic.rs simply seems to be incorrect for
all big-endian platforms.
Signed-off-by: Ulrich Weigand <ulrich.weigand@de.ibm.com>
Implement ARM personality routine in Rust.
Remove the `eh_personality_catch` lang item.
Use a simplified version of `cfg_if!` in libunwind.
Closes#34786
This commit adds support to rustbuild to run crate unit tests (those defined by
`#[test]`) as well as documentation tests. All tests are powered by `cargo test`
under the hood.
Each step requires the `libtest` library is built for that corresponding stage.
Ideally the `test` crate would be a dev-dependency, but for now it's just easier
to ensure that we sequence everything in the right order.
Currently no filtering is implemented, so there's not actually a method of
testing *only* libstd or *only* libcore, but rather entire swaths of crates are
tested all at once.
A few points of note here are:
* The `coretest` and `collectionstest` crates are just listed as `[[test]]`
entires for `cargo test` to naturally pick up. This mean that `cargo test -p
core` actually runs all the tests for libcore.
* Libraries that aren't tested all mention `test = false` in their `Cargo.toml`
* Crates aren't currently allowed to have dev-dependencies due to
rust-lang/cargo#860, but we can likely alleviate this restriction once
workspaces are implemented.
cc #31590
Currently the compiler has two relatively critical bugs in the implementation of
MSVC unwinding:
* #33112 - faults like segfaults and illegal instructions will run destructors
in Rust, meaning we keep running code after a super-fatal exception
has happened.
* #33116 - When compiling with LTO plus `-Z no-landing-pads` (or `-C
panic=abort` with the previous commit) LLVM won't remove all `invoke`
instructions, meaning that some landing pads stick around and
cleanups may be run due to the previous bug.
These both stem from the flavor of "personality function" that Rust uses for
unwinding on MSVC. On 32-bit this is `_except_handler3` and on 64-bit this is
`__C_specific_handler`, but they both essentially are the "most generic"
personality functions for catching exceptions and running cleanups. That is,
thse two personalities will run cleanups for all exceptions unconditionally, so
when we use them we run cleanups for **all SEH exceptions** (include things like
segfaults).
Note that this also explains why LLVM won't optimize away `invoke` instructions.
These functions can legitimately still unwind (the `nounwind` attribute only
seems to apply to "C++ exception-like unwining"). Also note that the standard
library only *catches* Rust exceptions, not others like segfaults and illegal
instructions.
LLVM has support for another personality, `__CxxFrameHandler3`, which does not
run cleanups for general exceptions, only C++ exceptions thrown by
`_CxxThrowException`. This essentially ideally matches our use case, so this
commit moves us over to using this well-known personality function as well as
exception-throwing function.
This doesn't *seem* to pull in any extra runtime dependencies just yet, but if
it does we can perhaps try to work out how to implement more of it in Rust
rather than relying on MSVCRT runtime bits.
More details about how this is actually implemented can be found in the changes
itself, but this...
Closes#33112Closes#33116
This commit is an implementation of [RFC 1513] which allows applications to
alter the behavior of panics at compile time. A new compiler flag, `-C panic`,
is added and accepts the values `unwind` or `panic`, with the default being
`unwind`. This model affects how code is generated for the local crate, skipping
generation of landing pads with `-C panic=abort`.
[RFC 1513]: https://github.com/rust-lang/rfcs/blob/master/text/1513-less-unwinding.md
Panic implementations are then provided by crates tagged with
`#![panic_runtime]` and lazily required by crates with
`#![needs_panic_runtime]`. The panic strategy (`-C panic` value) of the panic
runtime must match the final product, and if the panic strategy is not `abort`
then the entire DAG must have the same panic strategy.
With the `-C panic=abort` strategy, users can expect a stable method to disable
generation of landing pads, improving optimization in niche scenarios,
decreasing compile time, and decreasing output binary size. With the `-C
panic=unwind` strategy users can expect the existing ability to isolate failure
in Rust code from the outside world.
Organizationally, this commit dismantles the `sys_common::unwind` module in
favor of some bits moving part of it to `libpanic_unwind` and the rest into the
`panicking` module in libstd. The custom panic runtime support is pretty similar
to the custom allocator support with the only major difference being how the
panic runtime is injected (takes the `-C panic` flag into account).