Retire the `unnamed_fields` feature for now
`#![feature(unnamed_fields)]` was implemented in part in #115131 and #115367, however work on that feature has (afaict) stalled and in the mean time there have been some concerns raised (e.g.[^1][^2]) about whether `unnamed_fields` is worthwhile to have in the language, especially in its current desugaring. Because it represents a compiler implementation burden including a new kind of anonymous ADT and additional complication to field selection, and is quite prone to bugs today, I'm choosing to remove the feature.
However, since I'm not one to really write a bunch of words, I'm specifically *not* going to de-RFC this feature. This PR essentially *rolls back* the state of this feature to "RFC accepted but not yet implemented"; however if anyone wants to formally unapprove the RFC from the t-lang side, then please be my guest. I'm just not totally willing to summarize the various language-facing reasons for why this feature is or is not worthwhile, since I'm coming from the compiler side mostly.
Fixes#117942Fixes#121161Fixes#121263Fixes#121299Fixes#121722Fixes#121799Fixes#126969Fixes#131041
Tracking:
* https://github.com/rust-lang/rust/issues/49804
[^1]: https://rust-lang.zulipchat.com/#narrow/stream/213817-t-lang/topic/Unnamed.20struct.2Funion.20fields
[^2]: https://github.com/rust-lang/rust/issues/49804#issuecomment-1972619108
Consider outermost const-anon in `non_local_def` lint
This PR change the logic for finding the parent of the `impl` definition in the `non_local_definitions` lint to consider multiple level of const-anon items, instead of only one currently.
I also took the opportunity to cleanup the related code.
cc ``@traviscross``
Fixes https://github.com/rust-lang/rust/issues/131474
Compiler & its UI tests: Rename remaining occurrences of "object safe" to "dyn compatible"
Follow-up to #130826.
Part of #130852.
1. 1st commit: Fix stupid oversights. Should've been part of #130826.
2. 2nd commit: Rename the unstable feature `object_safe_for_dispatch` to `dyn_compatible_for_dispatch`. Might not be worth the churn, you decide.
3. 3rd commit: Apply the renaming to all UI tests (contents and paths).
Precise capturing in traits
This PR begins to implement `feature(precise_capturing_in_traits)`, which enables using the `impl Trait + use<..>` syntax for RPITITs. It implements this by giving the desugared GATs variance, and representing the uncaptured lifetimes as bivariant, like how opaque captures work.
Right now, I've left out implementing a necessary extension to the `refining_impl_trait` lint, and also I've made it so that all RPITITs always capture the parameters that come from the trait, because I'm not totally yet convinced that it's sound to not capture these args. It's certainly required to capture the type and const parameters from the trait (e.g. Self), or else users could bivariantly relate two RPITIT args that come from different impls, but region parameters don't affect trait selection in the same way, so it *may* be possible to relax this in the future. Let's stay conservative for now, though.
I'm not totally sure what tests could be added on top of the ones I already added, since we really don't need to exercise the `precise_capturing` feature but simply what makes it special for RPITITs.
r? types
Tracking issue:
* #130044
rustc_target: Add sme-b16b16 as an explicit aarch64 target feature
LLVM 20 split out what used to be called b16b16 and correspond to aarch64
FEAT_SVE_B16B16 into sve-b16b16 and sme-b16b16.
Add sme-b16b16 as an explicit feature and update the codegen accordingly.
Resolves https://github.com/rust-lang/rust/pull/129894.
codegen_ssa: consolidate tied target checks
Fixes#105110.
Fixes#105111.
`rustc_codegen_llvm` and `rustc_codegen_gcc` duplicated logic for checking if tied target features were partially enabled. This PR consolidates these checks into `rustc_codegen_ssa` in the `codegen_fn_attrs` query, which also is run pre-monomorphisation for each function, which ensures that this check is run for unused functions, as would be expected.
Also adds a test confirming that enabling one tied feature doesn't imply another - the appropriate error for this was already being emitted. I did a bisect and narrowed it down to two patches it was likely to be - something in #128796, probably #128221 or #128679.
Introduce SolverRelating type relation to the new solver
Redux of #128744.
Splits out relate for the new solver so that implementors don't need to implement it themselves.
r? lcnr
fix/update teach_note from 'escaping mutable ref/ptr' const-check
The old note was quite confusing since it talked about statics, but the message is also shown for consts. So let's reword to something that is true for both of them.
LLVM 20 split out what used to be called b16b16 and correspond to aarch64
FEAT_SVE_B16B16 into sve-b16b16 and sme-b16b16.
Add sme-b16b16 as an explicit feature and update the codegen accordingly.
Reserve guarded string literals (RFC 3593)
Implementation for RFC 3593, including:
- lexer / parser changes
- diagnostics
- migration lint
- tests
We reserve `#"`, `##"`, `###"`, `####`, and any other string of four or more repeated `#`. This avoids infinite lookahead in the lexer, though we still use infinite lookahead in the parser to provide better forward compatibility diagnostics.
This PR does not implement any special lexing of the string internals:
- strings preceded by one or more `#` are denied
- regardless of the number of trailing `#`
- string contents are lexed as if it was just a bare `"string"`
Tracking issue: #123735
RFC: rust-lang/rfcs#3593
Dont ICE when encountering post-mono layout cycle error
It's possible to encounter post-mono layout cycle errors in `fn_abi_of_instance`. Don't ICE in those cases.
This was originally discovered in an async fn, but that's not the only way to encounter such an error (which the other test I added should demonstrate).
Error messsages suck, but this fix is purely about suppressing the ICE.
Fixes#131409
[Coverage][MCDC] Adapt mcdc to llvm 19
Related issue: #126672
Also finish task 4 at #124144
[llvm #82448](https://github.com/llvm/llvm-project/pull/82448) has introduced some break changes into mcdc, causing incompatibility between llvm 18 and 19. This draft adapts to that change and gives up supporting for llvm-18.
Fix utf8-bom test
The BOM was accidentally removed in https://github.com/rust-lang/rust/pull/57108
I had to move the run-pass line down, because compiletest doesn't seem to know about BOMs, so it does not parse the header if it is the first line.
Add tests for some old fixed issues
Closes#30867Closes#30472Closes#28994Closes#26719 (and migrates the relevant test to the new run-make)
Closes#23600
cc `@jieyouxu` for the run-make-support changes
try-job: x86_64-msvc
Don't allow the `#[pointee]` attribute where it doesn't belong
Error if the `#[pointee]` attribute is applied to anything but generic type parameters.
Closes#128485
Related to #123430
liballoc: introduce String, Vec const-slicing
This change `const`-qualifies many methods on `Vec` and `String`, notably `as_slice`, `as_str`, `len`. These changes are made behind the unstable feature flag `const_vec_string_slice`.
## Motivation
This is to support simultaneous variance over ownership and constness. I have an enum type that may contain either `String` or `&str`, and I want to produce a `&str` from it in a possibly-`const` context.
```rust
enum StrOrString<'s> {
Str(&'s str),
String(String),
}
impl<'s> StrOrString<'s> {
const fn as_str(&self) -> &str {
match self {
// In a const-context, I really only expect to see this variant, but I can't switch the implementation
// in some mode like #[cfg(const)] -- there has to be a single body
Self::Str(s) => s,
// so this is a problem, since it's not `const`
Self::String(s) => s.as_str(),
}
}
}
```
Currently `String` and `Vec` don't support this, but can without functional changes. Similar logic applies for `len`, `capacity`, `is_empty`.
## Changes
The essential thing enabling this change is that `Unique::as_ptr` is `const`. This lets us convert `RawVec::ptr` -> `Vec::as_ptr` -> `Vec::as_slice` -> `String::as_str`.
I had to move the `Deref` implementations into `as_{str,slice}` because `Deref` isn't `#[const_trait]`, but I would expect this change to be invisible up to inlining. I moved the `DerefMut` implementations as well for uniformity.
This change `const`-qualifies many methods on Vec and String, notably
`as_slice`, `as_str`, `len`. These changes are made behind the unstable
feature flag `const_vec_string_slice` with the following tracking issue:
https://github.com/rust-lang/rust/issues/129041
add `naked_asm!` macro for use in `#[naked]` functions
tracking issue: https://github.com/rust-lang/rust/issues/90957
Adds the `core::arch::naked_asm` macro, to be used in `#[naked]` functions, but providing better error messages and a place to explain the restrictions on assembly in naked functions.
This PR does not yet require that the `naked_asm!` macro is used inside of `#[naked]` functions:
- the `asm!` macro can still be used in `#[naked]` functions currently, with the same restrictions and error messages as before.
- the `naked_asm!` macro can be used outside of `#[naked]` functions. It has not yet been decided whether that should be allowed long-term.
In this PR, the parsing code of `naked_asm!` now enforces the restrictions on assembly in naked functions, with the exception of checking that the `noreturn` option is specified. It also has not currently been decided if `noreturn` should be implicit or not.
This PR looks large because it touches a bunch of tests. The code changes are mostly straightforward I think: we now have 3 flavors of assembly macro, and that information must be propagated through the parsing code and error messages.
cc `@Lokathor`
r? `@Amanieu`
- fix for divergence
- fix error message
- fix another cranelift test
- fix some cranelift things
- don't set the NORETURN option for naked asm
- fix use of naked_asm! in doc comment
- fix use of naked_asm! in run-make test
- use `span_bug` in unreachable branch
Make deprecated_cfg_attr_crate_type_name a hard error
Turns the forward compatibility lint added by #83744 into a hard error, so now, while the `#![crate_name]` and `#![crate_type]` attributes are still allowed in raw form, they are now forbidden to be nested inside a `#![cfg_attr()]` attribute.
The following will now be an error:
```Rust
#![cfg_attr(foo, crate_name = "foobar")]
#![cfg_attr(foo, crate_type = "bin")]
```
This code will continue working and is not deprecated:
```Rust
#![crate_name = "foobar"]
#![crate_type = "lib"]
```
The reasoning for this is explained in #83744: it allows us to not have to cfg-expand in order to determine the crate's type and name.
As of filing the PR, exactly two years have passed since #99784 has been merged, which has turned the lint's default warning level into an error, so there has been ample time to move off the now-forbidden syntax.
cc #91632 - tracking issue for the lint
On function and method calls in patterns, link to the book
```
error: expected a pattern, found an expression
--> f889.rs:3:13
|
3 | let (x, y.drop()) = (1, 2);
| ^^^^^^^^ not a pattern
|
= note: arbitrary expressions are not allowed in patterns: <https://doc.rust-lang.org/book/ch18-00-patterns.html>
error[E0532]: expected a pattern, found a function call
--> f889.rs:2:13
|
2 | let (x, drop(y)) = (1, 2);
| ^^^^ not a tuple struct or tuple variant
|
= note: function calls are not allowed in patterns: <https://doc.rust-lang.org/book/ch18-00-patterns.html>
```
Fix#97200.
Do not consider match/let/ref of place that evaluates to `!` to diverge, disallow coercions from them too
Fixes#117288.
This PR implements a heuristic which disables two things that are currently being performed on the HIR when we have **expressions that involve place-like expressions that point to `!`**. Specifically, it will (in certain cases explained below):
### (1.) Disable the `NeverToAny` coercion we implicitly insert for `!`.
Which fixes this inadvertent, sneaky unsoundness:
```
unsafe {
let x: *const ! = &0 as *const u8 as *const !;
let _: () = *x;
}
```
which is UB because currently rust emits an *implicit* NeverToAny coercion even though we really shouldn't be, since there's no read of the value pointed by `x`.
### (2.) Disable the logic which considers expression which evaluate to `!` to diverge, which affects the type returned by the containing block.
Which fixes this unsoundness:
```
fn make_up_a_value<T>() -> T {
unsafe {
let x: *const ! = &0 as *const u8 as *const !;
let _ = *x;
}
}
```
We disable these two operations **if** the expression is a place-like expression (locals, statics, field projections, index operations, and deref operations), and if the parent expression is either:
(1.) the LHS of an assignment
(2.) AddrOf
(3.) A match or let **unless** all of the *patterns consitute a read*, which is explained below:
And finally, a pattern currently is considered to constitute a read **unless** it is a wildcard, or an OR pattern. An OR pattern is considered to constitute a read if all of its subpatterns constitute a read, to remain as conservative as possible in cases like `_ | subpat` or `subpat | _`.
All other patterns are considered currently to constitute a read. Specifically, because `NeverToAny` is a coercion performed on a *value* and not a *place*, `Struct { .. }` on a `!` type must be a coercion currently, and we currently rely on this behavior to allow us to perform coercions like `let _: i32 = x;` where `x: !`.
This is already considered UB by [miri](https://play.rust-lang.org/?version=nightly&mode=debug&edition=2021&gist=daf3a2246433fe43fdc07d1389c276c9), but also means it does not affect the preexisting UB in this case:
```
let Struct { .. } = *never_ptr;
```
Even though it's likely up for debate since we're not actually reading any data out of the struct, it almost certainly causes inference changes which I do *NOT* want to fix in this PR.