stabilize Strict Provenance and Exposed Provenance APIs
Given that [RFC 3559](https://rust-lang.github.io/rfcs/3559-rust-has-provenance.html) has been accepted, t-lang has approved the concept of provenance to exist in the language. So I think it's time that we stabilize the strict provenance and exposed provenance APIs, and discuss provenance explicitly in the docs:
```rust
// core::ptr
pub const fn without_provenance<T>(addr: usize) -> *const T;
pub const fn dangling<T>() -> *const T;
pub const fn without_provenance_mut<T>(addr: usize) -> *mut T;
pub const fn dangling_mut<T>() -> *mut T;
pub fn with_exposed_provenance<T>(addr: usize) -> *const T;
pub fn with_exposed_provenance_mut<T>(addr: usize) -> *mut T;
impl<T: ?Sized> *const T {
pub fn addr(self) -> usize;
pub fn expose_provenance(self) -> usize;
pub fn with_addr(self, addr: usize) -> Self;
pub fn map_addr(self, f: impl FnOnce(usize) -> usize) -> Self;
}
impl<T: ?Sized> *mut T {
pub fn addr(self) -> usize;
pub fn expose_provenance(self) -> usize;
pub fn with_addr(self, addr: usize) -> Self;
pub fn map_addr(self, f: impl FnOnce(usize) -> usize) -> Self;
}
impl<T: ?Sized> NonNull<T> {
pub fn addr(self) -> NonZero<usize>;
pub fn with_addr(self, addr: NonZero<usize>) -> Self;
pub fn map_addr(self, f: impl FnOnce(NonZero<usize>) -> NonZero<usize>) -> Self;
}
```
I also did a pass over the docs to adjust them, because this is no longer an "experiment". The `ptr` docs now discuss the concept of provenance in general, and then they go into the two families of APIs for dealing with provenance: Strict Provenance and Exposed Provenance. I removed the discussion of how pointers also have an associated "address space" -- that is not actually tracked in the pointer value, it is tracked in the type, so IMO it just distracts from the core point of provenance. I also adjusted the docs for `with_exposed_provenance` to make it clear that we cannot guarantee much about this function, it's all best-effort.
There are two unstable lints associated with the strict_provenance feature gate; I moved them to a new [strict_provenance_lints](https://github.com/rust-lang/rust/issues/130351) feature since I didn't want this PR to have an even bigger FCP. ;)
`@rust-lang/opsem` Would be great to get some feedback on the docs here. :)
Nominating for `@rust-lang/libs-api.`
Part of https://github.com/rust-lang/rust/issues/95228.
[FCP comment](https://github.com/rust-lang/rust/pull/130350#issuecomment-2395114536)
Finish stabilization of `result_ffi_guarantees`
The internal linting has been changed, so all that is left is making sure we stabilize what we want to stabilize.
Rollup of 4 pull requests
Successful merges:
- #126588 (Added more scenarios where comma to be removed in the function arg)
- #131728 (bootstrap: extract builder cargo to its own module)
- #131968 (Rip out old effects var handling code from traits)
- #131981 (Remove the `BoundConstness::NotConst` variant)
r? `@ghost`
`@rustbot` modify labels: rollup
Rip out old effects var handling code from traits
Traits no longer have an effect parameter, so this removes logic associated with it. It also removes logic surrounding confirming `~const Destruct` bounds, which I added a looooong time ago, and which I don't feel like we need anymore -- if it needs to be added back, it should be rewritten :D
cc `@fee1-dead`
Added more scenarios where comma to be removed in the function arg
This is an attempt to address the problem methion in https://github.com/rust-lang/rust/issues/106304#issuecomment-1837273666.
Copy the annotation to explain the fix
If the next Error::Extra ("next") doesn't next to current ("current")
```
fn foo(_: (), _: u32) {}
- foo("current", (), 1u32, "next")
+ foo((), 1u32)
```
If the previous error is not a `Error::Extra`, then do not trim the next comma
```
- foo((), "current", 42u32, "next")
+ foo((), 42u32)
```
Frankly, this is a fix from a test case and may not cover all scenarios
Continue to get rid of `ty::Const::{try_}eval*`
This PR mostly does:
* Removes all of the `try_eval_*` and `eval_*` helpers from `ty::Const`, and replace their usages with `try_to_*`.
* Remove `ty::Const::eval`.
* Rename `ty::Const::normalize` to `ty::Const::normalize_internal`. This function is still used in the normalization code itself.
* Fix some weirdness around the `TransmuteFrom` goal.
I'm happy to split it out further; for example, I could probably land the first part which removes the helpers, or the changes to codegen which are more obvious than the changes to tools.
r? BoxyUwU
Part of https://github.com/rust-lang/rust/issues/130704
Remove `lower_mono_bounds`
I'm not convinced about the usefulness of `lower_mono_bounds`, especially since we have *so* many lower-bound-like fns in HIR lowering, so I've just inlined it into its callers.
`optimize` attribute applied to things other than methods/functions/c…
…losures gives an error (#128488)
Duplicate of #128943, which I had accidentally closed when rebasing.
cc. `@jieyouxu` `@compiler-errors` `@nikomatsakis` `@traviscross` `@pnkfelix.`
Make `llvm::set_section` take a `&CStr`
There's no reason to convert the section name to an intermediate `String`, when the LLVM-C API wants a C string anyway.
Follow-up to #131876.
compiler: Error on layout of enums with invalid reprs
Surprising no one, the ICEs with the same message have the same root cause.
Invalid reprs can reach layout computation for various reasons. For instance, the compiler may want to use its layout computations to discern if a combination of layout-affecting attributes results in a valid type to begin with by e.g. computing its size. When the input is bad, return an error reflecting that the answer to the question is not a useful one.
Allow `#[deny]` inside `#[forbid]` as a no-op
Forbid cannot be overriden. When someome tries to do this anyways, it results in a hard error. That makes sense.
Except it doesn't, because macros. Macros may reasonably use `#[deny]` (or `#[warn]` for an allow-by-default lint) in their expansion to assert that their expanded code follows the lint. This is doesn't work when the output gets expanded into a `forbid()` context. This is pretty silly, since both the macros and the code agree on the lint!
By making it a warning instead, we remove the problem with the macro, which is now nothing as warnings are suppressed in macro expanded code, while still telling users that something is up.
fixes#121483
Just because the code says it's OK does not mean that it actually is OK.
Nodes with the same total size were not sorted, their order relied on
hashmap iteration.
compiler: Adopt rust-analyzer impls for `LayoutCalculatorError`
We're about to massively churn the internals of `rustc_abi`. To minimize the immediate and future impact on rust-analyzer, as a subtree that depends on this crate, grow some API on `LayoutCalculatorError` that reflects their uses of it. This way we can nest the type in theirs, and they can just call functions on it without having to inspect and flatten-out its innards.
refactor fudge_inference, handle effect vars
this makes it easier to use fudging outside of `fudge_inference_if_ok`, which is likely necessary to handle inference variable leaks on rollback.
We now also uses exhaustive matches where possible and improve the code to handle effect vars.
r? `@compiler-errors` `@BoxyUwU`
Get rid of `OnlySelfBounds`
We turn `PredicateFilter` into a newtyped bool called `OnlySelfBounds`. There's no reason to lose the information of the `PredicateFilter`, so let's just pass it all the way through.
Remove unnecessary constness from `lower_generic_args_of_path`
We pass `NotConst` to all callsites of `lower_generic_args_of_path` except for `lower_poly_trait_ref`, so let's not do that.
Stop inverting expectation in normalization errors
We have some funky special case logic to invert the expectation and actual type for normalization errors depending on their cause code. IMO most of the error messages get better, except for `try {}` blocks' type expectations. I think that these need to be special cased in some other way, rather than via this hack.
Fixes#131763
Make sure that outer opaques capture inner opaques's lifetimes even with precise capturing syntax
When lowering an opaque, we must capture and duplicate all of the lifetimes in the opaque's bounds to correctly lower the opaque's bounds. We do this *even if* the lifetime is not captured according to the `+ use<>` precise capturing bound; in that case, we will later reject that captured lifetime. For example, Given an opaque like `impl Sized + 'a + use<>`, we will still duplicate `'a` but later error that it is not mentioned in the `use<>` bound.
The current heuristic was not properly handling cases like:
```
//@ edition: 2024
fn foo<'a>() -> impl Trait<Assoc = impl Trait2> + use<> {}
```
Which forces the outer `impl Trait` to capture `'a` since `impl Trait2` *implicitly* captures `'a` due to the new lifetime capture rules for edition 2024. We were only capturing lifetimes syntactically mentioned in the bounds. (Note that this still is an error; we just need to capture `'a` so it is handled later in the compiler correctly -- hence the ICE in #131769 where a late-bound lifetime was being referenced outside of its binder).
This PR reworks the way we collect lifetimes to capture and duplicate in AST lowering to fix this.
Fixes#131769
warn less about non-exhaustive in ffi
Bindgen allows generating `#[non_exhaustive] #[repr(u32)]` enums. This results in nonintuitive nonlocal `improper_ctypes` warnings, even when the types are otherwise perfectly valid in C.
Adjust for actual tooling expectations by avoiding warning on simple enums with only unit variants.
Closes https://github.com/rust-lang/rust/issues/116831
Migrate `llvm::set_comdat` and `llvm::SetUniqueComdat` to LLVM-C FFI.
Note, now we can call `llvm::set_comdat` only when the target actually
supports adding comdat. As this has no convenient LLVM-C API, we
implement this as `TargetOptions::supports_comdat`.
Co-authored-by: Stuart Cook <Zalathar@users.noreply.github.com>
small interpreter error cleanup
- Add `InterpretResult::map_err_kind` for the common case of swapping out the error kind (while preserving the backtrace pointing to the original error source)
- Rename `InterpError` -> `InterpErrorKind` to be consistent with the `kind` field name, and make it more clear that this is not the final error type
Return values larger than 2 registers using a return area pointer
LLVM and Cranelift disagree about how to return values that don't fit in the registers designated for return values. LLVM will force the entire return value to be passed by return area pointer, while Cranelift will look at each IR level return value independently and decide to pass it in a register or not, which would result in the return value being passed partially in registers and partially through a return area pointer.
While Cranelift may need to be fixed as the LLVM behavior is generally more correct with respect to the surface language, forcing this behavior in rustc itself makes it easier for other backends to conform to the Rust ABI and for the C ABI rustc already handles this behavior anyway.
In addition LLVM's decision to pass the return value in registers or using a return area pointer depends on how exactly the return type is lowered to an LLVM IR type. For example `Option<u128>` can be lowered as `{ i128, i128 }` in which case the x86_64 backend would use a return area pointer, or it could be passed as `{ i32, i128 }` in which case the x86_64 backend would pass it in registers by taking advantage of an LLVM ABI extension that allows using 3 registers for the x86_64 sysv call conv rather than the officially specified 2 registers.
This adjustment is only necessary for the Rust ABI as for other ABI's the calling convention implementations in rustc_target already ensure any return value which doesn't fit in the available amount of return registers is passed in the right way for the current target.
Helps with https://github.com/rust-lang/rustc_codegen_cranelift/issues/1525
cc https://github.com/bytecodealliance/wasmtime/issues/9250
Before this change, adding a lint was a difficult matter
because it always had some overhead involved. This was
because all lints would run, no matter their default level,
or if the user had #![allow]ed them. This PR changes that
Forbid cannot be overriden. When someome tries to do this anyways,
it results in a hard error. That makes sense.
Except it doesn't, because macros. Macros may reasonably use `#[deny]`
in their expansion to assert
that their expanded code follows the lint. This is doesn't work when the
output gets expanded into a `forbid()` context. This is pretty silly,
since both the macros and the code agree on the lint!
Therefore, we allow `#[deny(..)]`ing a lint that's already forbidden,
keeping the level at forbid.
Never emit `vptr` for empty/auto traits
Emiting `vptr`s for empty/auto traits is unnecessary (#114942) and causes unsoundness in `trait_upcasting` (#131813). This PR should ensure that we never emit vtables for such traits. See the linked issues for more details.
I'm not sure if I can add tests for the vtable layout. So this PR only adds tests for the soundness hole (i.e., the segmentation fault will disappear after this PR).
Fixes#114942Fixes#131813
Cc #65991 (tracking issue for `trait_upcasting`)
r? `@WaffleLapkin` (per https://github.com/rust-lang/rust/issues/131813#issuecomment-2419969745)
Default to the medium code model on OpenHarmony LoongArch target
The context for this is #130266: setting the medium code model for the `loongarch64-linux-ohos` target.
r? ```@jieyouxu```
Dont ICE when computing coverage of synthetic async closure body
I'm not totally certain if this is *right*, but at least it doesn't ICE.
The issue is that we end up generating two MIR bodies for each async closure, since the `FnOnce` and `Fn`/`FnMut` implementations have different borrowing behavior of their captured variables. They should ideally both contribute to the coverage, since those MIR bodies are (*to the user*) the same code and should have no behavioral differences.
This PR at least suppresses the ICEs, and then I guess worst case we can fix this the right way later.
r? Zalathar or re-roll
Fixes#131190
Allow dropping dyn principal
Revival of #126660, which was a revival of #114679. Fixes#126313.
Allows dropping principal when coercing trait objects, e.g. `dyn Debug + Send` -> `dyn Send`.
cc `@compiler-errors` `@Jules-Bertholet`
r? `@lcnr`
compiler: use `is_none_or` where it is clearly better
heuristic was: if it easily allows removing bangs entirely? worth it. if it requires more effort or just moves the bang? not.
cleanup canonical queries
best reviewed commit by commit. adding `CanonicalQueryInput` to stop returning `defining_opaque_types` in query responses is the most involved change here.
r? ``@compiler-errors``
Setting up indirect access to external data for loongarch64-linux-{musl,ohos}
In issue #118053, the `loongarch64-unknown-linux-gnu` target needs indirection to access external data, and so do the `loongarch64-unknown-linux-musl` and `loongarch64-unknown-linux-ohos` targets.
Make destructors on `extern "C"` frames to be executed
This would make the example in #123231 print "Noisy Drop". I didn't mark this as fixing the issue because the behaviour is yet to be spec'ed.
Tracking:
- https://github.com/rust-lang/rust/issues/74990
Fix needless_lifetimes in stable_mir
Hi,
This PR fixes the following clippy warning
```
warning: the following explicit lifetimes could be elided: 'a
--> compiler/stable_mir/src/mir/visit.rs:490:6
|
490 | impl<'a> PlaceRef<'a> {
| ^^ ^^
|
= help: for further information visit https://rust-lang.github.io/rust-clippy/master/index.html#needless_lifetimes
= note: `#[warn(clippy::needless_lifetimes)]` on by default
help: elide the lifetimes
|
490 - impl<'a> PlaceRef<'a> {
490 + impl PlaceRef<'_> {
|
```
Best regards,
Michal
Fix trivially_copy_pass_by_ref in stable_mir
Hi,
This PR fixes the following clippy warnings
```
warning: this argument (8 byte) is passed by reference, but would be more efficient if passed by value (limit: 8 byte)
--> compiler/stable_mir/src/mir/body.rs:1042:34
|
1042 | fn subslice_ty(ty: Ty, from: &u64, to: &u64, from_end: &bool) -> Result<Ty, Error> {
| ^^^^ help: consider passing by value instead: `u64`
|
= help: for further information visit https://rust-lang.github.io/rust-clippy/master/index.html#trivially_copy_pass_by_ref
= note: requested on the command line with `-W clippy::trivially-copy-pass-by-ref`
warning: this argument (8 byte) is passed by reference, but would be more efficient if passed by value (limit: 8 byte)
--> compiler/stable_mir/src/mir/body.rs:1042:44
|
1042 | fn subslice_ty(ty: Ty, from: &u64, to: &u64, from_end: &bool) -> Result<Ty, Error> {
| ^^^^ help: consider passing by value instead: `u64`
|
= help: for further information visit https://rust-lang.github.io/rust-clippy/master/index.html#trivially_copy_pass_by_ref
warning: this argument (1 byte) is passed by reference, but would be more efficient if passed by value (limit: 8 byte)
--> compiler/stable_mir/src/mir/body.rs:1042:60
|
1042 | fn subslice_ty(ty: Ty, from: &u64, to: &u64, from_end: &bool) -> Result<Ty, Error> {
| ^^^^^ help: consider passing by value instead: `bool`
|
= help: for further information visit https://rust-lang.github.io/rust-clippy/master/index.html#trivially_copy_pass_by_ref
```
Best regards,
Michal
Rename `can_coerce` to `may_coerce`, and then structurally resolve correctly in the probe
We need to structurally resolve the lhs and rhs of the coercion. Also, renaming the method so it's less ambiguous about what it's doing... the word "may" gives more clear signal that it has false positives imo.
r? lcnr
Don't check unsize goal in MIR validation when opaques remain
Similarly to `mir_assign_valid_types`, let's just skip when there are opaques. Fixes#130921.
Fix explicit_iter_loop in rustc_serialize
Hi,
This PR fixes some clippy warnings
```
warning: it is more concise to loop over references to containers instead of using explicit iteration methods
--> compiler/rustc_serialize/src/serialize.rs:675:18
|
675 | for e in self.iter() {
| ^^^^^^^^^^^ help: to write this more concisely, try: `self`
|
= help: for further information visit https://rust-lang.github.io/rust-clippy/master/index.html#explicit_iter_loop
```
Best regards,
Michal
Try to improve error messages involving aliases in the solver
1. Treat aliases as rigid only if it may not be defined and it's well formed (i.e. for projections, its trait goal is satisfied).
2. Record goals that are related to alias normalization under a new `GoalKind`, so we can look into them in the `BestObligation` visitor.
3. Try to deduplicate errors due to self types of goals that are un-normalizable aliases.
r? lcnr
Add fast-path when computing the default visibility
This PR adds (or more correctly re-adds the) fast-path when computing the default visibility, by taking advantage of the fact that the "interposable" requested visibility always return the "default" codegen visibility.
Should address the small regression observed in https://github.com/rust-lang/rust/pull/131111#issuecomment-2402273967.
r? `@lqd`
Implement edition 2024 match ergonomics restrictions
This implements the minimalest version of [match ergonomics for edition 2024](https://rust-lang.github.io/rfcs/3627-match-ergonomics-2024.html). This minimal version makes it an error to ever reset the default binding mode. The implemented proposal is described precisely [here](https://hackmd.io/zUqs2ISNQ0Wrnxsa9nhD0Q#RFC-3627-nano), where it is called "RFC 3627-nano".
Rules:
- Rule 1C: When the DBM (default binding mode) is not `move` (whether or not behind a reference), writing `mut`, `ref`, or `ref mut` on a binding is an error.
- Rule 2C: Reference patterns can only match against references in the scrutinee when the DBM is `move`.
This minimal version is forward-compatible with the main proposals for match ergonomics 2024: [RFC3627](https://rust-lang.github.io/rfcs/3627-match-ergonomics-2024.html) itself, the alternative [rule 4-early variant](https://rust-lang.github.io/rfcs/3627-match-ergonomics-2024.html), and [others](https://hackmd.io/zUqs2ISNQ0Wrnxsa9nhD0Q). The idea is to give us more time to iron out a final proposal.
This includes a migration lint that desugars any offending pattern into one that doesn't make use of match ergonomics. Such patterns have identical meaning across editions.
This PR insta-stabilizes the proposed behavior onto edition 2024.
r? `@ghost`
Tracking:
- https://github.com/rust-lang/rust/issues/123076
Add the pauth-lr target feature, corresponding to aarch64 FEAT_PAuth_LR.
This feature has been added in LLVM 19.
It is currently not supported by the Linux hwcap and so we cannot add
runtime feature detection for it at this time.
Rollup of 10 pull requests
Successful merges:
- #131582 (Add wasm32-unknown-emscripten platform support document)
- #131694 (Make fuchsia-test-runner.py compatible with new JSON output from llvm-readelf)
- #131700 (Fix match_same_arms in stable_mir)
- #131712 (Mark the unstable LazyCell::into_inner const)
- #131746 (Relax a memory order in `once_box`)
- #131754 (Don't report bivariance error when nesting a struct with field errors into another struct)
- #131760 (llvm: Match aarch64 data layout to new LLVM layout)
- #131764 (Fix unnecessary nesting in run-make test output directories)
- #131766 (Add mailmap entry for my dev-desktop setup)
- #131771 (Handle gracefully true/false in `cfg(target(..))` compact)
r? `@ghost`
`@rustbot` modify labels: rollup
Handle gracefully true/false in `cfg(target(..))` compact
This PR handles gracefully `true`/`false` in `cfg(target(..))` compact instead of ICE.
r? `@nnethercote`
Fixes#131759
llvm: Match aarch64 data layout to new LLVM layout
LLVM has added 3 new address spaces to support special Windows use cases. These shouldn't trouble us for now, but LLVM requires matching data layouts.
See llvm/llvm-project#111879 for details
Don't report bivariance error when nesting a struct with field errors into another struct
We currently have logic to avoid reporting lifetime bivariance ("lifetime parameter ... is never used") errors when a struct has field resolution errors. However, this doesn't apply transitively. This PR implements a simple visitor to do so.
This was reported [here](https://twitter.com/fasterthanlime/status/1846257921086165033) since a `derive(Deserialize, Serialize)` ends up generating helper structs which have bivariant lifetimes due to containing the offending struct (that's being derived on).
Fix match_same_arms in stable_mir
Hi,
This PR fixes some clippy warnings
(Reopened https://github.com/rust-lang/rust/pull/131688)
```
warning: this match arm has an identical body to another arm
--> compiler/stable_mir/src/mir/visit.rs:197:13
|
197 | / StatementKind::FakeRead(_, place) => {
198 | | self.visit_place(place, PlaceContext::NON_MUTATING, location);
199 | | }
| |_____________^
|
= help: try changing either arm body
= help: for further information visit https://rust-lang.github.io/rust-clippy/master/index.html#match_same_arms
help: or try merging the arm patterns
|
197 | StatementKind::FakeRead(_, place) | StatementKind::PlaceMention(place) => {
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
help: and remove this obsolete arm
|
209 - StatementKind::PlaceMention(place) => {
210 - self.visit_place(place, PlaceContext::NON_MUTATING, location);
211 - }
|
```
Best regards,
Michal
Remove `GenKillAnalysis`
There are two kinds of dataflow analysis in the compiler: `Analysis`, which is the basic kind, and `GenKillAnalysis`, which is a more specialized kind for gen/kill analyses that is intended as an optimization. However, it turns out that `GenKillAnalysis` is actually a pessimization! It's faster (and much simpler) to do all the gen/kill analyses via `Analysis`. This lets us remove `GenKillAnalysis`, and `GenKillSet`, and a few other things, and also merge `AnalysisDomain` into `Analysis`. The PR removes 500 lines of code and improves performance.
r? `@tmiasko`
Use `ThinVec` for PredicateObligation storage
~~I noticed while profiling clippy on a project that a large amount of time is being spent allocating `Vec`s for `PredicateObligation`, and the `Vec`s are often quite small. This is an attempt to optimise this by using SmallVec to avoid heap allocations for these common small Vecs.~~
This PR turns all the `Vec<PredicateObligation>` into a single type alias while avoiding referring to `Vec` around it, then swaps the type over to `ThinVec<PredicateObligation>` and fixes the fallout. This also contains an implementation of `ThinVec::extract_if`, copied from `Vec::extract_if` and currently being upstreamed to https://github.com/Gankra/thin-vec/pull/66.
This leads to a small (0.2-0.7%) performance gain in the latest perf run.
LLVM has added 3 new address spaces to support special Windows use
cases. These shouldn't trouble us for now, but LLVM requires matching
data layouts.
See llvm/llvm-project#111879 for details
Fix uninlined_format_args in stable_mir
Hi,
This PR fixes some clippy warnings
```
warning: variables can be used directly in the `format!` string
--> compiler/stable_mir/src/mir/pretty.rs:362:13
|
362 | write!(writer, "{kind}{:?}", place)
| ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
= help: for further information visit https://rust-lang.github.io/rust-clippy/master/index.html#uninlined_format_args
= note: requested on the command line with `-W clippy::uninlined-format-args`
help: change this to
|
362 - write!(writer, "{kind}{:?}", place)
362 + write!(writer, "{kind}{place:?}")
|
```
Best regards,
Michal
Don't report `on_unimplemented` message for negative traits
Kinda useless change but it was affecting my ability to read error messages when experimenting with negative bounds.
stabilize `-Znext-solver=coherence` again
r? `@compiler-errors`
---
This PR stabilizes the use of the next generation trait solver in coherence checking by enabling `-Znext-solver=coherence` by default. More specifically its use in the *implicit negative overlap check*. The tracking issue for this is https://github.com/rust-lang/rust/issues/114862. Closes#114862.
This is a direct copy of #121848 which has been reverted due to a hang in `nalgebra`: #130056. This hang should have been fixed by #130617 and #130821. See the added section in the stabilization report containing user facing changes merged since the original FCP.
## Background
### The next generation trait solver
The new solver lives in [`rustc_trait_selection::solve`](https://github.com/rust-lang/rust/blob/master/compiler/rustc_trait_selection/src/solve/mod.rs) and is intended to replace the existing *evaluate*, *fulfill*, and *project* implementation. It also has a wider impact on the rest of the type system, for example by changing our approach to handling associated types.
For a more detailed explanation of the new trait solver, see the [rustc-dev-guide](https://rustc-dev-guide.rust-lang.org/solve/trait-solving.html). This does not stabilize the current behavior of the new trait solver, only the behavior impacting the implicit negative overlap check. There are many areas in the new solver which are not yet finalized. We are confident that their final design will not conflict with the user-facing behavior observable via coherence. More on that further down.
Please check out [the chapter](https://rustc-dev-guide.rust-lang.org/solve/significant-changes.html) summarizing the most significant changes between the existing and new implementations.
### Coherence and the implicit negative overlap check
Coherence checking detects any overlapping impls. Overlapping trait impls always error while overlapping inherent impls result in an error if they have methods with the same name. Coherence also results in an error if any other impls could exist, even if they are currently unknown. This affects impls which may get added to upstream crates in a backwards compatible way and impls from downstream crates.
Coherence failing to detect overlap is generally considered to be unsound, even if it is difficult to actually get runtime UB this way. It is quite easy to get ICEs due to bugs in coherence.
It currently consists of two checks:
The [orphan check] validates that impls do not overlap with other impls we do not know about: either because they may be defined in a sibling crate, or because an upstream crate is allowed to add it without being considered a breaking change.
The [overlap check] validates that impls do not overlap with other impls we know about. This is done as follows:
- Instantiate the generic parameters of both impls with inference variables
- Equate the `TraitRef`s of both impls. If it fails there is no overlap.
- [implicit negative]: Check whether any of the instantiated `where`-bounds of one of the impls definitely do not hold when using the constraints from the previous step. If a `where`-bound does not hold, there is no overlap.
- *explicit negative (still unstable, ignored going forward)*: Check whether the any negated `where`-bounds can be proven, e.g. a `&mut u32: Clone` bound definitely does not hold as an explicit `impl<T> !Clone for &mut T` exists.
The overlap check has to *prove that unifying the impls does not succeed*. This means that **incorrectly getting a type error during coherence is unsound** as it would allow impls to overlap: coherence has to be *complete*.
Completeness means that we never incorrectly error. This means that during coherence we must only add inference constraints if they are definitely necessary. During ordinary type checking [this does not hold](https://play.rust-lang.org/?version=stable&mode=debug&edition=2021&gist=01d93b592bd9036ac96071cbf1d624a9), so the trait solver has to behave differently, depending on whether we're in coherence or not.
The implicit negative check only considers goals to "definitely not hold" if they could not be implemented downstream, by a sibling, or upstream in a backwards compatible way. If the goal is is "unknowable" as it may get added in another crate, we add an ambiguous candidate: [source](bea5bebf3d/compiler/rustc_trait_selection/src/solve/assembly/mod.rs (L858-L883)).
[orphan check]: fd80c02c16/compiler/rustc_trait_selection/src/traits/coherence.rs (L566-L579)
[overlap check]: fd80c02c16/compiler/rustc_trait_selection/src/traits/coherence.rs (L92-L98)
[implicit negative]: fd80c02c16/compiler/rustc_trait_selection/src/traits/coherence.rs (L223-L281)
## Motivation
Replacing the existing solver in coherence fixes soundness bugs by removing sources of incompleteness in the type system. The new solver separately strengthens coherence, resulting in more impls being disjoint and passing the coherence check. The concrete changes will be elaborated further down. We believe the stabilization to reduce the likelihood of future bugs in coherence as the new implementation is easier to understand and reason about.
It allows us to remove the support for coherence and implicit-negative reasoning in the old solver, allowing us to remove some code and simplifying the old trait solver. We will only remove the old solver support once this stabilization has reached stable to make sure we're able to quickly revert in case any unexpected issues are detected before then.
Stabilizing the use of the next-generation trait solver expresses our confidence that its current behavior is intended and our work towards enabling its use everywhere will not require any breaking changes to the areas used by coherence checking. We are also confident that we will be able to replace the existing solver everywhere, as maintaining two separate systems adds a significant maintainance burden.
## User-facing impact and reasoning
### Breakage due to improved handling of associated types
The new solver fixes multiple issues related to associated types. As these issues caused coherence to consider more types distinct, fixing them results in more overlap errors. This is therefore a breaking change.
#### Structurally relating aliases containing bound vars
Fixes https://github.com/rust-lang/rust/issues/102048. In the existing solver relating ambiguous projections containing bound variables is structural. This is *incomplete* and allows overlapping impls. These was mostly not exploitable as the same issue also caused impls to not apply when trying to use them. The new solver defers alias-relating to a nested goal, fixing this issue:
```rust
// revisions: current next
//[next] compile-flags: -Znext-solver=coherence
trait Trait {}
trait Project {
type Assoc<'a>;
}
impl Project for u32 {
type Assoc<'a> = &'a u32;
}
// Eagerly normalizing `<?infer as Project>::Assoc<'a>` is ambiguous,
// so the old solver ended up structurally relating
//
// (?infer, for<'a> fn(<?infer as Project>::Assoc<'a>))
//
// with
//
// ((u32, fn(&'a u32)))
//
// Equating `&'a u32` with `<u32 as Project>::Assoc<'a>` failed, even
// though these types are equal modulo normalization.
impl<T: Project> Trait for (T, for<'a> fn(<T as Project>::Assoc<'a>)) {}
impl<'a> Trait for (u32, fn(&'a u32)) {}
//[next]~^ ERROR conflicting implementations of trait `Trait` for type `(u32, for<'a> fn(&'a u32))`
```
A crater run did not discover any breakage due to this change.
#### Unknowable candidates for higher ranked trait goals
This avoids an unsoundness by attempting to normalize in `trait_ref_is_knowable`, fixing https://github.com/rust-lang/rust/issues/114061. This is a side-effect of supporting lazy normalization, as that forces us to attempt to normalize when checking whether a `TraitRef` is knowable: [source](47dd709bed/compiler/rustc_trait_selection/src/solve/assembly/mod.rs (L754-L764)).
```rust
// revisions: current next
//[next] compile-flags: -Znext-solver=coherence
trait IsUnit {}
impl IsUnit for () {}
pub trait WithAssoc<'a> {
type Assoc;
}
// We considered `for<'a> <T as WithAssoc<'a>>::Assoc: IsUnit`
// to be knowable, even though the projection is ambiguous.
pub trait Trait {}
impl<T> Trait for T
where
T: 'static,
for<'a> T: WithAssoc<'a>,
for<'a> <T as WithAssoc<'a>>::Assoc: IsUnit,
{
}
impl<T> Trait for Box<T> {}
//[next]~^ ERROR conflicting implementations of trait `Trait`
```
The two impls of `Trait` overlap given the following downstream crate:
```rust
use dep::*;
struct Local;
impl WithAssoc<'_> for Box<Local> {
type Assoc = ();
}
```
There a similar coherence unsoundness caused by our handling of aliases which is fixed separately in https://github.com/rust-lang/rust/pull/117164.
This change breaks the [`derive-visitor`](https://crates.io/crates/derive-visitor) crate. I have opened an issue in that repo: nikis05/derive-visitor#16.
### Evaluating goals to a fixpoint and applying inference constraints
In the old implementation of the implicit-negative check, each obligation is [checked separately without applying its inference constraints](bea5bebf3d/compiler/rustc_trait_selection/src/traits/coherence.rs (L323-L338)). The new solver instead [uses a `FulfillmentCtxt`](bea5bebf3d/compiler/rustc_trait_selection/src/traits/coherence.rs (L315-L321)) for this, which evaluates all obligations in a loop until there's no further inference progress.
This is necessary for backwards compatibility as we do not eagerly normalize with the new solver, resulting in constraints from normalization to only get applied by evaluating a separate obligation. This also allows more code to compile:
```rust
// revisions: current next
//[next] compile-flags: -Znext-solver=coherence
trait Mirror {
type Assoc;
}
impl<T> Mirror for T {
type Assoc = T;
}
trait Foo {}
trait Bar {}
// The self type starts out as `?0` but is constrained to `()`
// due to the where-clause below. Because `(): Bar` is known to
// not hold, we can prove the impls disjoint.
impl<T> Foo for T where (): Mirror<Assoc = T> {}
//[current]~^ ERROR conflicting implementations of trait `Foo` for type `()`
impl<T> Foo for T where T: Bar {}
fn main() {}
```
The old solver does not run nested goals to a fixpoint in evaluation. The new solver does do so, strengthening inference and improving the overlap check:
```rust
// revisions: current next
//[next] compile-flags: -Znext-solver=coherence
trait Foo {}
impl<T> Foo for (u8, T, T) {}
trait NotU8 {}
trait Bar {}
impl<T, U: NotU8> Bar for (T, T, U) {}
trait NeedsFixpoint {}
impl<T: Foo + Bar> NeedsFixpoint for T {}
impl NeedsFixpoint for (u8, u8, u8) {}
trait Overlap {}
impl<T: NeedsFixpoint> Overlap for T {}
impl<T, U: NotU8, V> Overlap for (T, U, V) {}
//[current]~^ ERROR conflicting implementations of trait `Foo`
```
### Breakage due to removal of incomplete candidate preference
Fixes#107887. In the old solver we incompletely prefer the builtin trait object impl over user defined impls. This can break inference guidance, inferring `?x` in `dyn Trait<u32>: Trait<?x>` to `u32`, even if an explicit impl of `Trait<u64>` also exists.
This caused coherence to incorrectly allow overlapping impls, resulting in ICEs and a theoretical unsoundness. See https://github.com/rust-lang/rust/issues/107887#issuecomment-1997261676. This compiles on stable but results in an overlap error with `-Znext-solver=coherence`:
```rust
// revisions: current next
//[next] compile-flags: -Znext-solver=coherence
struct W<T: ?Sized>(*const T);
trait Trait<T: ?Sized> {
type Assoc;
}
// This would trigger the check for overlap between automatic and custom impl.
// They actually don't overlap so an impl like this should remain possible
// forever.
//
// impl Trait<u64> for dyn Trait<u32> {}
trait Indirect {}
impl Indirect for dyn Trait<u32, Assoc = ()> {}
impl<T: Indirect + ?Sized> Trait<u64> for T {
type Assoc = ();
}
// Incomplete impl where `dyn Trait<u32>: Trait<_>` does not hold, but
// `dyn Trait<u32>: Trait<u64>` does.
trait EvaluateHack<U: ?Sized> {}
impl<T: ?Sized, U: ?Sized> EvaluateHack<W<U>> for T
where
T: Trait<U, Assoc = ()>, // incompletely constrains `_` to `u32`
U: IsU64,
T: Trait<U, Assoc = ()>, // incompletely constrains `_` to `u32`
{
}
trait IsU64 {}
impl IsU64 for u64 {}
trait Overlap<U: ?Sized> {
type Assoc: Default;
}
impl<T: ?Sized + EvaluateHack<W<U>>, U: ?Sized> Overlap<U> for T {
type Assoc = Box<u32>;
}
impl<U: ?Sized> Overlap<U> for dyn Trait<u32, Assoc = ()> {
//[next]~^ ERROR conflicting implementations of trait `Overlap<_>`
type Assoc = usize;
}
```
### Considering region outlives bounds in the `leak_check`
For details on the `leak_check`, see the FCP proposal #119820.[^leak_check]
[^leak_check]: which should get moved to the dev-guide :3
In both coherence and during candidate selection, the `leak_check` relies on the region constraints added in `evaluate`. It therefore currently does not register outlives obligations: [source](ccb1415eac/compiler/rustc_trait_selection/src/traits/select/mod.rs (L792-L810)). This was likely done as a performance optimization without considering its impact on the `leak_check`. This is the case as in the old solver, *evaluatation* and *fulfillment* are split, with evaluation being responsible for candidate selection and fulfillment actually registering all the constraints.
This split does not exist with the new solver. The `leak_check` can therefore eagerly detect errors caused by region outlives obligations. This improves both coherence itself and candidate selection:
```rust
// revisions: current next
//[next] compile-flags: -Znext-solver=coherence
trait LeakErr<'a, 'b> {}
// Using this impl adds an `'b: 'a` bound which results
// in a higher-ranked region error. This bound has been
// previously ignored but is now considered.
impl<'a, 'b: 'a> LeakErr<'a, 'b> for () {}
trait NoOverlapDir<'a> {}
impl<'a, T: for<'b> LeakErr<'a, 'b>> NoOverlapDir<'a> for T {}
impl<'a> NoOverlapDir<'a> for () {}
//[current]~^ ERROR conflicting implementations of trait `NoOverlapDir<'_>`
// --------------------------------------
// necessary to avoid coherence unknowable candidates
struct W<T>(T);
trait GuidesSelection<'a, U> {}
impl<'a, T: for<'b> LeakErr<'a, 'b>> GuidesSelection<'a, W<u32>> for T {}
impl<'a, T> GuidesSelection<'a, W<u8>> for T {}
trait NotImplementedByU8 {}
trait NoOverlapInd<'a, U> {}
impl<'a, T: GuidesSelection<'a, W<U>>, U> NoOverlapInd<'a, U> for T {}
impl<'a, U: NotImplementedByU8> NoOverlapInd<'a, U> for () {}
//[current]~^ conflicting implementations of trait `NoOverlapInd<'_, _>`
```
### Removal of `fn match_fresh_trait_refs`
The old solver tries to [eagerly detect unbounded recursion](b14fd2359f/compiler/rustc_trait_selection/src/traits/select/mod.rs (L1196-L1211)), forcing the affected goals to be ambiguous. This check is only an approximation and has not been added to the new solver.
The check is not necessary in the new solver and it would be problematic for caching. As it depends on all goals currently on the stack, using a global cache entry would have to always make sure that doing so does not circumvent this check.
This changes some goals to error - or succeed - instead of failing with ambiguity. This allows more code to compile:
```rust
// revisions: current next
//[next] compile-flags: -Znext-solver=coherence
// Need to use this local wrapper for the impls to be fully
// knowable as unknowable candidate result in ambiguity.
struct Local<T>(T);
trait Trait<U> {}
// This impl does not hold, but is ambiguous in the old
// solver due to its overflow approximation.
impl<U> Trait<U> for Local<u32> where Local<u16>: Trait<U> {}
// This impl holds.
impl Trait<Local<()>> for Local<u8> {}
// In the old solver, `Local<?t>: Trait<Local<?u>>` is ambiguous,
// resulting in `Local<?u>: NoImpl`, also being ambiguous.
//
// In the new solver the first impl does not apply, constraining
// `?u` to `Local<()>`, causing `Local<()>: NoImpl` to error.
trait Indirect<T> {}
impl<T, U> Indirect<U> for T
where
T: Trait<U>,
U: NoImpl
{}
// Not implemented for `Local<()>`
trait NoImpl {}
impl NoImpl for Local<u8> {}
impl NoImpl for Local<u16> {}
// `Local<?t>: Indirect<Local<?u>>` cannot hold, so
// these impls do not overlap.
trait NoOverlap<U> {}
impl<T: Indirect<U>, U> NoOverlap<U> for T {}
impl<T, U> NoOverlap<Local<U>> for Local<T> {}
//~^ ERROR conflicting implementations of trait `NoOverlap<Local<_>>`
```
### Non-fatal overflow
The old solver immediately emits a fatal error when hitting the recursion limit. The new solver instead returns overflow. This both allows more code to compile and is results in performance and potential future compatability issues.
Non-fatal overflow is generally desirable. With fatal overflow, changing the order in which we evaluate nested goals easily causes breakage if we have goal which errors and one which overflows. It is also required to prevent breakage due to the removal of `fn match_fresh_trait_refs`, e.g. [in `typenum`](https://github.com/rust-lang/trait-system-refactor-initiative/issues/73).
#### Enabling more code to compile
In the below example, the old solver first tried to prove an overflowing goal, resulting in a fatal error. The new solver instead returns ambiguity due to overflow for that goal, causing the implicit negative overlap check to succeed as `Box<u32>: NotImplemented` does not hold.
```rust
// revisions: current next
//[next] compile-flags: -Znext-solver=coherence
//[current] ERROR overflow evaluating the requirement
trait Indirect<T> {}
impl<T: Overflow<()>> Indirect<T> for () {}
trait Overflow<U> {}
impl<T, U> Overflow<U> for Box<T>
where
U: Indirect<Box<Box<T>>>,
{}
trait NotImplemented {}
trait Trait<U> {}
impl<T, U> Trait<U> for T
where
// T: NotImplemented, // causes old solver to succeed
U: Indirect<T>,
T: NotImplemented,
{}
impl Trait<()> for Box<u32> {}
```
#### Avoiding hangs with non-fatal overflow
Simply returning ambiguity when reaching the recursion limit can very easily result in hangs, e.g.
```rust
trait Recur {}
impl<T, U> Recur for ((T, U), (U, T))
where
(T, U): Recur,
(U, T): Recur,
{}
trait NotImplemented {}
impl<T: NotImplemented> Recur for T {}
```
This can happen quite frequently as it's easy to have exponential blowup due to multiple nested goals at each step. As the trait solver is depth-first, this immediately caused a fatal overflow error in the old solver. In the new solver we have to handle the whole proof tree instead, which can very easily hang.
To avoid this we restrict the recursion depth after hitting the recursion limit for the first time. We also **ignore all inference constraints from goals resulting in overflow**. This is mostly backwards compatible as any overflow in the old solver resulted in a fatal error.
### sidenote about normalization
We return ambiguous nested goals of `NormalizesTo` goals to the caller and ignore their impact when computing the `Certainty` of the current goal. See the [normalization chapter](https://rustc-dev-guide.rust-lang.org/solve/normalization.html) for more details.This means we apply constraints resulting from other nested goals and from equating the impl header when normalizing, even if a nested goal results in overflow. This is necessary to avoid breaking the following example:
```rust
trait Trait {
type Assoc;
}
struct W<T: ?Sized>(*mut T);
impl<T: ?Sized> Trait for W<W<T>>
where
W<T>: Trait,
{
type Assoc = ();
}
// `W<?t>: Trait<Assoc = u32>` does not hold as
// `Assoc` gets normalized to `()`. However, proving
// the where-bounds of the impl results in overflow.
//
// For this to continue to compile we must not discard
// constraints from normalizing associated types.
trait NoOverlap {}
impl<T: Trait<Assoc = u32>> NoOverlap for T {}
impl<T: ?Sized> NoOverlap for W<T> {}
```
#### Future compatability concerns
Non-fatal overflow results in some unfortunate future compatability concerns. Changing the approach to avoid more hangs by more strongly penalizing overflow can cause breakage as we either drop constraints or ignore candidates necessary to successfully compile. Weakening the overflow penalities instead allows more code to compile and strengthens inference while potentially causing more code to hang.
While the current approach is not perfect, we believe it to be good enough. We believe it to apply the necessary inference constraints to avoid breakage and expect there to not be any desirable patterns broken by our current penalities. Similarly we believe the current constraints to avoid most accidental hangs. Ignoring constraints of overflowing goals is especially useful, as it may allow major future optimizations to our overflow handling. See [this summary](https://hackmd.io/ATf4hN0NRY-w2LIVgeFsVg) and the linked documents in case you want to know more.
### changes to performance
In general, trait solving during coherence checking is not significant for performance. Enabling the next-generation trait solver in coherence does not impact our compile time benchmarks. We are still unable to compile the benchmark suite when fully enabling the new trait solver.
There are rare cases where the new solver has significantly worse performance due to non-fatal overflow, its reliance on fixpoint algorithms and the removal of the `fn match_fresh_trait_refs` approximation. We encountered such issues in [`typenum`](https://crates.io/crates/typenum) and believe it should be [pretty much as bad as it can get](https://github.com/rust-lang/trait-system-refactor-initiative/issues/73).
Due to an improved structure and far better caching, we believe that there is a lot of room for improvement and that the new solver will outperform the existing implementation in nearly all cases, sometimes significantly. We have not yet spent any time micro-optimizing the implementation and have many unimplemented major improvements, such as fast-paths for trivial goals.
### Unstable features
#### Unsupported unstable features
The new solver currently does not support all unstable features, most notably `#![feature(generic_const_exprs)]`, `#![feature(associated_const_equality)]` and `#![feature(adt_const_params)]` are not yet fully supported in the new solver. We are confident that supporting them is possible, but did not consider this to be a priority. This stabilization introduces new ICE when using these features in impl headers.
#### fixes to `#![feature(specialization)]`
- fixes#105782
- fixes#118987
#### fixes to `#![feature(type_alias_impl_trait)]`
- fixes#119272
- https://github.com/rust-lang/rust/issues/105787#issuecomment-1750112388
- fixes#124207
### Important changes since the original FCP
https://github.com/rust-lang/rust/pull/127574 changes the coherence unknowable candidate to only apply if all the super trait bounds may hold. This allows more code to compile and fixes a regression in `pyella`
https://github.com/rust-lang/rust/pull/130617 bails with ambiguity if the query response would contain too many non-region inference variables. This should only be triggered in case the result contains a lot of ambiguous aliases in which case further constraining the goal should resolve this.
https://github.com/rust-lang/rust/pull/130821 adds caching to a lot of type folders, which is necessary to handle exponentially large types and handles the hang in `nalgebra` together with #130617.
## This does not stabilize the whole solver
While this stabilizes the use of the new solver in coherence checking, there are many parts of the solver which will remain fully unstable. We may still adapt these areas while working towards stabilizing the new solver everywhere. We are confident that we are able to do so without negatively impacting coherence.
### goals with a non-empty `ParamEnv`
Coherence always uses an empty environment. We therefore do not depend on the behavior of `AliasBound` and `ParamEnv` candidates. We only stabilizes the behavior of user-defined and builtin implementations of traits. There are still many open questions there.
### opaque types in the defining scope
The handling of opaque types - `impl Trait` - in both the new and old solver is still not fully figured out. Luckily this can be ignored for now. While opaque types are reachable during coherence checking by using `impl_trait_in_associated_types`, the behavior during coherence is separate and self-contained. The old and new solver fully agree here.
### normalization is hard
This stabilizes that we equate associated types involving bound variables using deferred-alias-equality. We also stop eagerly normalizing in coherence, which should not have any user-facing impact.
We do not stabilize the normalization behavior outside of coherence, e.g. we currently deeply normalize all types during writeback with the new solver. This may change going forward
### how to replace `select` from the old solver
We sometimes depend on getting a single `impl` for a given trait bound, e.g. when resolving a concrete method for codegen/CTFE. We do not depend on this during coherence, so the exact approach here can still be freely changed going forward.
## Acknowledgements
This work would not have been possible without `@compiler-errors.` He implemented large chunks of the solver himself but also and did a lot of testing and experimentation, eagerly discovering multiple issues which had a significant impact on our approach. `@BoxyUwU` has also done some amazing work on the solver. Thank you for the endless hours of discussion resulting in the current approach. Especially the way aliases are handled has gone through multiple revisions to get to its current state.
There were also many contributions from - and discussions with - other members of the community and the rest of `@rust-lang/types.` This solver builds upon previous improvements to the compiler, as well as lessons learned from `chalk` and `a-mir-formality`. Getting to this point would not have been possible without that and I am incredibly thankful to everyone involved. See the [list of relevant PRs](https://github.com/rust-lang/rust/pulls?q=is%3Apr+is%3Amerged+label%3AWG-trait-system-refactor+-label%3Arollup+closed%3A%3C2024-03-22+).
Rollup of 9 pull requests
Successful merges:
- #122670 (Fix bug where `option_env!` would return `None` when env var is present but not valid Unicode)
- #131095 (Use environment variables instead of command line arguments for merged doctests)
- #131339 (Expand set_ptr_value / with_metadata_of docs)
- #131652 (Move polarity into `PolyTraitRef` rather than storing it on the side)
- #131675 (Update lint message for ABI not supported)
- #131681 (Fix up-to-date checking for run-make tests)
- #131702 (Suppress import errors for traits that couldve applied for method lookup error)
- #131703 (Resolved python deprecation warning in publish_toolstate.py)
- #131710 (Remove `'apostrophes'` from `rustc_parse_format`)
r? `@ghost`
`@rustbot` modify labels: rollup
Some float methods are now `const fn` under the `const_float_methods` feature gate.
In order to support `min`, `max`, `abs` and `copysign`, the implementation of some intrinsics had to be moved from Miri to rustc_const_eval.
Remove unnecessary sorts in `rustc_hir_analysis`
A follow-up after #131140. Here the related objects are `IndexSet` so do not require a sort to stay stable. And they don't need to be `mut` anymore.
r? ```@compiler-errors```
Add `&pin (mut|const) T` type position sugar
This adds parser support for `&pin mut T` and `&pin const T` references. These are desugared to `Pin<&mut T>` and `Pin<&T>` in the AST lowering phases.
This PR currently includes #130526 since that one is in the commit queue. Only the most recent commits (bd450027eb4a94b814a7dd9c0fa29102e6361149 and following) are new.
Tracking:
- #130494
r? `@compiler-errors`
Remove `'apostrophes'` from `rustc_parse_format`
The rest of the compiler uses \`grave accents\`, while `rustc_parse_format` uses \`'apostrophes.'\`
Also makes the crate compile as a stand-alone:
```
~/rust/compiler/rustc_parse_format $ cargo check
Compiling rustc_index_macros v0.0.0 (/home/lieselotte/rust/compiler/rustc_index_macros)
error[E0277]: `syn::Lit` doesn't implement `Debug`
--> compiler/rustc_index_macros/src/newtype.rs:52:57
|
52 | panic!("Specified multiple max: {old:?}");
| ^^^^^^^ `syn::Lit` cannot be formatted using `{:?}` because it doesn't implement `Debug`
|
= help: the trait `Debug` is not implemented for `syn::Lit`
= note: this error originates in the macro `$crate::const_format_args` which comes from the expansion of the macro `panic` (in Nightly builds, run with -Z macro-backtrace for more info)
error[E0277]: `syn::Lit` doesn't implement `Debug`
--> compiler/rustc_index_macros/src/newtype.rs:64:74
|
64 | panic!("Specified multiple debug format options: {old:?}");
| ^^^^^^^ `syn::Lit` cannot be formatted using `{:?}` because it doesn't implement `Debug`
|
= help: the trait `Debug` is not implemented for `syn::Lit`
= note: this error originates in the macro `$crate::const_format_args` which comes from the expansion of the macro `panic` (in Nightly builds, run with -Z macro-backtrace for more info)
For more information about this error, try `rustc --explain E0277`.
error: could not compile `rustc_index_macros` (lib) due to 2 previous errors
```
`@rustbot` label +A-diagnostics
Suppress import errors for traits that couldve applied for method lookup error
Self-explanatory. I hit this quite often when refactoring in rustc, so even though this isn't really showing up as significant in the UI test suite, it probably will matter more for multi-module projects.
Update lint message for ABI not supported
Tracking issue: #130260
As requested in https://github.com/rust-lang/rust/pull/128784#pullrequestreview-2364026550 I updated the error message.
I could also change it to be the same message as if it was a hard error on a normal function:
> "`{abi}` is not a supported ABI for the current target"
Or would that get confusing when people try to google the error message?
r? compiler-errors
Move polarity into `PolyTraitRef` rather than storing it on the side
Arguably we could move these modifiers into `TraitRef` instead of `PolyTraitRef`, but I see `TraitRef` as simply the *path* part of the trait ref. It doesn't really matter -- refactoring this further is much easier now.
Fix bug where `option_env!` would return `None` when env var is present but not valid Unicode
Fixes#122669 by making `option_env!` emit an error when the value of the environment variable is not valid Unicode.
Autodiff Upstreaming - enzyme frontend
This is an upstream PR for the `autodiff` rustc_builtin_macro that is part of the autodiff feature.
For the full implementation, see: https://github.com/rust-lang/rust/pull/129175
**Content:**
It contains a new `#[autodiff(<args>)]` rustc_builtin_macro, as well as a `#[rustc_autodiff]` builtin attribute.
The autodiff macro is applied on function `f` and will expand to a second function `df` (name given by user).
It will add a dummy body to `df` to make sure it type-checks. The body will later be replaced by enzyme on llvm-ir level,
we therefore don't really care about the content. Most of the changes (700 from 1.2k) are in `compiler/rustc_builtin_macros/src/autodiff.rs`, which expand the macro. Nothing except expansion is implemented for now.
I have a fallback implementation for relevant functions in case that rustc should be build without autodiff support. The default for now will be off, although we want to flip it later (once everything landed) to on for nightly. For the sake of CI, I have flipped the defaults, I'll revert this before merging.
**Dummy function Body:**
The first line is an `inline_asm` nop to make inlining less likely (I have additional checks to prevent this in the middle end of rustc. If `f` gets inlined too early, we can't pass it to enzyme and thus can't differentiate it.
If `df` gets inlined too early, the call site will just compute this dummy code instead of the derivatives, a correctness issue. The following black_box lines make sure that none of the input arguments is getting optimized away before we replace the body.
**Motivation:**
The user facing autodiff macro can verify the user input. Then I write it as args to the rustc_attribute, so from here on I can know that these values should be sensible. A rustc_attribute also turned out to be quite nice to attach this information to the corresponding function and carry it till the backend.
This is also just an experiment, I expect to adjust the user facing autodiff macro based on user feedback, to improve usability.
As a simple example of what this will do, we can see this expansion:
From:
```
#[autodiff(df, Reverse, Duplicated, Const, Active)]
pub fn f1(x: &[f64], y: f64) -> f64 {
unimplemented!()
}
```
to
```
#[rustc_autodiff]
#[inline(never)]
pub fn f1(x: &[f64], y: f64) -> f64 {
::core::panicking::panic("not implemented")
}
#[rustc_autodiff(Reverse, Duplicated, Const, Active,)]
#[inline(never)]
pub fn df(x: &[f64], dx: &mut [f64], y: f64, dret: f64) -> f64 {
unsafe { asm!("NOP"); };
::core::hint::black_box(f1(x, y));
::core::hint::black_box((dx, dret));
::core::hint::black_box(f1(x, y))
}
```
I will add a few more tests once I figured out why rustc rebuilds every time I touch a test.
Tracking:
- https://github.com/rust-lang/rust/issues/124509
try-job: dist-x86_64-msvc
Special treatment empty tuple when suggest adding a string literal in format macro.
For example:
```rust
let s = "123";
println!({}, "sss", s);
```
Suggest:
`println!("{:?} {} {}", {}, "sss", s);`
fixes#130170
Fix clobber_abi and disallow SVE-related registers in Arm64EC inline assembly
Currently `clobber_abi` in Arm64EC inline assembly is implemented using `InlineAsmClobberAbi::AArch64NoX18`, but broken since it attempts to clobber registers that cannot be used in Arm64EC: https://godbolt.org/z/r3PTrGz5r
```
error: cannot use register `x13`: x13, x14, x23, x24, x28, v16-v31 cannot be used for Arm64EC
--> <source>:6:14
|
6 | asm!("", clobber_abi("C"), options(nostack, nomem, preserves_flags));
| ^^^^^^^^^^^^^^^^
error: cannot use register `x14`: x13, x14, x23, x24, x28, v16-v31 cannot be used for Arm64EC
--> <source>:6:14
|
6 | asm!("", clobber_abi("C"), options(nostack, nomem, preserves_flags));
| ^^^^^^^^^^^^^^^^
<omitted the same errors for v16-v31>
```
Additionally, this disallows SVE-related registers per https://github.com/rust-lang/rust/pull/131332#issuecomment-2401189142.
cc ``@dpaoliello``
r? ``@Amanieu``
``@rustbot`` label O-windows O-AArch64 +A-inline-assembly