Optimize empty case in Vec::retain
While profiling some code that happens to call Vec::retain() in a tight loop, I noticed more runtime than expected in retain, even in a bench case where the vector was always empty. When I wrapped my call to retain in `if !myvec.is_empty()` I saw faster execution compared with doing retain on an empty vector.
On closer inspection, Vec::retain is doing set_len(0) on itself even when the vector is empty, and then resetting the length again in BackshiftOnDrop::drop.
Unscientific screengrab of a flamegraph illustrating how we end up spending time in set_len and drop:

Fix doc nits
Many tiny changes to stdlib doc comments to make them consistent (for example "Returns foo", rather than "Return foo"), adding missing periods, paragraph breaks, backticks for monospace style, and other minor nits.
from_ref, from_mut: clarify documentation
This was brought up [here](https://github.com/rust-lang/rust/issues/56604#issuecomment-2143193486). The domain of quantification is generally always constrained by the type in the type signature, and I am not sure it's always worth spelling that out explicitly as that makes things exceedingly verbose. But since this was explicitly brought up, let's clarify.
Remove memory leaks in doctests in `core`, `alloc`, and `std`
cc `@RalfJung` https://github.com/rust-lang/rust/issues/126067https://github.com/rust-lang/miri/issues/3670
Should be no actual *documentation* changes[^1], all added/modified lines in the doctests are hidden with `#`,
This PR splits the existing memory leaks in doctests in `core`, `alloc`, and `std` into two general categories:
1. "Non-focused" memory leaks that are incidental to the thing being documented, and/or are easy to remove, i.e. they are only there because preventing the leak would make the doctest less clear and/or concise.
- These doctests simply have a comment like `# // Prevent leaks for Miri.` above the added line that removes the memory leak.
- [^2]Some of these would perhaps be better as part of the public documentation part of the doctest, to clarify that a memory leak can happen if it is not otherwise mentioned explicitly in the documentation (specifically the ones in `(A)Rc::increment_strong_count(_in)`).
2. "Focused" memory leaks that are intentional and documented, and/or are possibly fragile to remove.
- These doctests have a `# // FIXME` comment above the line that removes the memory leak, with a note that once `-Zmiri-disable-leak-check` can be applied at test granularity, these tests should be "un-unleakified" and have `-Zmiri-disable-leak-check` enabled.
- Some of these are possibly fragile (e.g. unleaking the result of `Vec::leak`) and thus should definitely not be made part of the documentation.
This should be all of the leaks currently in `core` and `alloc`. I only found one leak in `std`, and it was in the first category (excluding the modules `@RalfJung` mentioned in https://github.com/rust-lang/rust/issues/126067 , and reducing the number of iterations of [one test](https://github.com/rust-lang/rust/blob/master/library/std/src/sync/once_lock.rs#L49-L94) from 1000 to 10)
[^1]: assuming [^2] is not added
[^2]: backlink
Don't check the capacity every time (and also for `Extend` for tuples, as this is how `unzip()` is implemented).
I did this with an unsafe method on `Extend` that doesn't check for growth (`extend_one_unchecked()`). I've marked it as perma-unstable currently, although we may want to expose it in the future so collections outside of std can benefit from it. Then specialize `Extend for (A, B)` for `TrustedLen` to call it.
It may seem that an alternative way of implementing this is to have a semi-public trait (`#[doc(hidden)]` public, so collections outside of core can implement it) for `extend()` inside tuples, and specialize it from collections. However, it is impossible due to limitations of `min_specialization`.
A concern that may arise with the current approach is that implementing `extend_one_unchecked()` correctly must also incur implementing `extend_reserve()`, otherwise you can have UB. This is a somewhat non-local safety invariant. However, I believe this is fine, since to have actual UB you must have unsafe code inside your `extend_one_unchecked()` that makes incorrect assumption, *and* not implement `extend_reserve()`. I've also documented this requirement.
In 126578 we ended up with more binary size increases than expected.
This change attempts to avoid inlining large things into small things, to avoid that kind of increase, in cases when top-down inlining will still be able to do that inlining later.
Document overrides of `clone_from()` in core/std
As mentioned in https://github.com/rust-lang/rust/pull/96979#discussion_r1379502413
Specifically, when an override doesn't just forward to an inner type, document the behavior and that it's preferred over simply assigning a clone of source. Also, change instances where the second parameter is "other" to "source".
I reused some of the wording over and over for similar impls, but I'm not sure that the wording is actually *good*. Would appreciate feedback about that.
Also, now some of these seem to provide pretty specific guarantees about behavior (e.g. will reuse the exact same allocation iff the len is the same), but I was basing it off of the docs for [`Box::clone_from`](https://doc.rust-lang.org/1.75.0/std/boxed/struct.Box.html#method.clone_from-1) - I'm not sure if providing those strong guarantees is actually good or not.
Implement `Vec::pop_if`
This PR adds `Vec::pop_if` to the public API, behind the `vec_pop_if` feature.
```rust
impl<T> Vec<T> {
pub fn pop_if<F>(&mut self, f: F) -> Option<T>
where F: FnOnce(&mut T) -> bool;
}
```
Tracking issue: #122741
## Open questions
- [ ] Should the first unit test be split up?
- [ ] I don't see any guidance on ordering of methods in impl blocks, should I move the method elsewhere?
Vec::try_with_capacity
Related to #91913
Implements try_with_capacity for `Vec`, `VecDeque`, and `String`. I can follow it up with more collections if desired.
`Vec::try_with_capacity()` is functionally equivalent to the current stable:
```rust
let mut v = Vec::new();
v.try_reserve_exact(n)?
```
However, `try_reserve` calls non-inlined `finish_grow`, which requires old and new `Layout`, and is designed to reallocate memory. There is benefit to using `try_with_capacity`, besides syntax convenience, because it generates much smaller code at the call site with a direct call to the allocator. There's codegen test included.
It's also a very desirable functionality for users of `no_global_oom_handling` (Rust-for-Linux), since it makes a very commonly used function available in that environment (`with_capacity` is used much more frequently than all `(try_)reserve(_exact)`).
Specifically, when an override doesn't just forward to an inner type,
document the behavior and that it's preferred over simply assigning
a clone of source. Also, change instances where the second parameter is
"other" to "source".
Help with common API confusion, like asking for `push` when the data structure really has `append`.
```
error[E0599]: no method named `size` found for struct `Vec<{integer}>` in the current scope
--> $DIR/rustc_confusables_std_cases.rs:17:7
|
LL | x.size();
| ^^^^
|
help: you might have meant to use `len`
|
LL | x.len();
| ~~~
help: there is a method with a similar name
|
LL | x.resize();
| ~~~~~~
```
#59450
Remove special-case handling of `vec.split_off(0)`
#76682 added special handling to `Vec::split_off` for the case where `at == 0`. Instead of copying the vector's contents into a freshly-allocated vector and returning it, the special-case code steals the old vector's allocation, and replaces it with a new (empty) buffer with the same capacity.
That eliminates the need to copy the existing elements, but comes at a surprising cost, as seen in #119913. The returned vector's capacity is no longer determined by the size of its contents (as would be expected for a freshly-allocated vector), and instead uses the full capacity of the old vector.
In cases where the capacity is large but the size is small, that results in a much larger capacity than would be expected from reading the documentation of `split_off`. This is especially bad when `split_off` is called in a loop (to recycle a buffer), and the returned vectors have a wide variety of lengths.
I believe it's better to remove the special-case code, and treat `at == 0` just like any other value:
- The current documentation states that `split_off` returns a “newly allocated vector”, which is not actually true in the current implementation when `at == 0`.
- If the value of `at` could be non-zero at runtime, then the caller has already agreed to the cost of a full memcpy of the taken elements in the general case. Avoiding that copy would be nice if it were close to free, but the different handling of capacity means that it is not.
- If the caller specifically wants to avoid copying in the case where `at == 0`, they can easily implement that behaviour themselves using `mem::replace`.
Fixes#119913.
Use `assert_unchecked` instead of `assume` intrinsic in the standard library
Now that a public wrapper for the `assume` intrinsic exists, we can use it in the standard library.
CC #119131
Document some alternatives to `Vec::split_off`
One of the discussion points that came up in #119917 is that some people use `Vec::split_off` in cases where they probably shouldn't, because the alternatives (like `mem::take`) are hard to discover.
This PR adds some suggestions to the documentation of `split_off` that should point people towards alternatives that might be more appropriate for their use-case.
I've deliberately tried to keep these changes as simple and uncontroversial as possible, so that they don't depend on how the team decides to handle the concerns raised in #119917. That's why I haven't touched the existing documentation for `split_off`, and haven't added links to `split_off` to the documentation of other methods.
InPlaceDstBufDrop holds onto the allocation before the shrinking happens
which means it must deallocate the destination elements but the source
allocation.