Teach structured errors to display short `Ty<'_>`
Make it so that in every structured error annotated with `#[derive(Diagnostic)]` that has a field of type `Ty<'_>`, the printing of that value into a `String` will look at the thread-local storage `TyCtxt` in order to shorten to a length appropriate with the terminal width. When this happen, the resulting error will have a note with the file where the full type name was written to.
```
error[E0618]: expected function, found `((..., ..., ..., ...), ..., ..., ...)``
--> long.rs:7:5
|
6 | fn foo(x: D) { //~ `x` has type `(...
| - `x` has type `((..., ..., ..., ...), ..., ..., ...)`
7 | x(); //~ ERROR expected function, found `(...
| ^--
| |
| call expression requires function
|
= note: the full name for the type has been written to 'long.long-type-14182675702747116984.txt'
= note: consider using `--verbose` to print the full type name to the console
```
Follow up to and response to the comments on #136898.
r? ``@oli-obk``
Make it so that every structured error annotated with `#[derive(Diagnostic)]` that has a field of type `Ty<'_>`, the printing of that value into a `String` will look at the thread-local storage `TyCtxt` in order to shorten to a length appropriate with the terminal width. When this happen, the resulting error will have a note with the file where the full type name was written to.
```
error[E0618]: expected function, found `((..., ..., ..., ...), ..., ..., ...)``
--> long.rs:7:5
|
6 | fn foo(x: D) { //~ `x` has type `(...
| - `x` has type `((..., ..., ..., ...), ..., ..., ...)`
7 | x(); //~ ERROR expected function, found `(...
| ^--
| |
| call expression requires function
|
= note: the full name for the type has been written to 'long.long-type-14182675702747116984.txt'
= note: consider using `--verbose` to print the full type name to the console
```
Specify scope in `out_of_scope_macro_calls` lint
```
warning: cannot find macro `in_root` in the crate root
--> $DIR/key-value-expansion-scope.rs:1:10
|
LL | #![doc = in_root!()]
| ^^^^^^^ not found in the crate root
|
= warning: this was previously accepted by the compiler but is being phased out; it will become a hard error in a future release!
= note: for more information, see issue #124535 <https://github.com/rust-lang/rust/issues/124535>
= help: import `macro_rules` with `use` to make it callable above its definition
= note: `#[warn(out_of_scope_macro_calls)]` on by default
```
r? ```@petrochenkov```
Suggest replacing `.` with `::` in more error diagnostics.
First commit makes the existing "help: use the path separator to refer to an item" also work when the base is a type alias, not just a trait/module/struct.
The existing unconditional `DefKind::Mod | DefKind::Trait` match arm is changed to a conditional `DefKind::Mod | DefKind::Trait | DefKind::TyAlias` arm that only matches if the `path_sep` suggestion-adding closure succeeds, so as not to stop the later `DefKind::TyAlias`-specific suggestions if the path-sep suggestion does not apply. This shouldn't change behavior for `Mod` or `Trait` (due to the default arm's `return false` etc).
This commit also updates `tests/ui/resolve/issue-22692.rs` to reflect this, and also renames it to something more meaningful.
This commit also makes the `bad_struct_syntax_suggestion` closure take `err` as a parameter instead of capturing it, since otherwise caused borrowing errors due to the change to using `path_sep` in a pattern guard.
<details> <summary> Type alias diagnostic example </summary>
```rust
type S = String;
fn main() {
let _ = S.new;
}
```
```diff
error[E0423]: expected value, found type alias `S`
--> diag7.rs:4:13
|
4 | let _ = S.new;
| ^
|
- = note: can't use a type alias as a constructor
+ help: use the path separator to refer to an item
+ |
+4 | let _ = S::new;
+ | ~~
```
</details>
Second commit adds some cases for `enum`s, where if there is a field/method expression where the field/method has the name of a unit/tuple variant, we assume the user intended to create that variant[^1] and suggest replacing the `.` from the field/method suggestion with a `::` path separator. If no such variant is found (or if the error is not a field/method expression), we give the existing suggestion that suggests adding `::TupleVariant(/* fields */)` after the enum.
<details> <summary> Enum diagnostic example </summary>
```rust
enum Foo {
A(u32),
B,
C { x: u32 },
}
fn main() {
let _ = Foo.A(42); // changed
let _ = Foo.B; // changed
let _ = Foo.D(42); // no change
let _ = Foo.D; // no change
let _ = Foo(42); // no change
}
```
```diff
error[E0423]: expected value, found enum `Foo`
--> diag8.rs:8:13
|
8 | let _ = Foo.A(42); // changed
| ^^^
|
note: the enum is defined here
--> diag8.rs:1:1
|
1 | / enum Foo {
2 | | A(u32),
3 | | B,
4 | | C { x: u32 },
5 | | }
| |_^
-help: you might have meant to use the following enum variant
- |
-8 | let _ = Foo::B.A(42); // changed
- | ~~~~~~
-help: alternatively, the following enum variant is available
+help: use the path separator to refer to a variant
|
-8 | let _ = (Foo::A(/* fields */)).A(42); // changed
- | ~~~~~~~~~~~~~~~~~~~~~~
+8 | let _ = Foo::A(42); // changed
+ | ~~
error[E0423]: expected value, found enum `Foo`
--> diag8.rs:9:13
|
9 | let _ = Foo.B; // changed
| ^^^
|
note: the enum is defined here
--> diag8.rs:1:1
|
1 | / enum Foo {
2 | | A(u32),
3 | | B,
4 | | C { x: u32 },
5 | | }
| |_^
-help: you might have meant to use the following enum variant
- |
-9 | let _ = Foo::B.B; // changed
- | ~~~~~~
-help: alternatively, the following enum variant is available
+help: use the path separator to refer to a variant
|
-9 | let _ = (Foo::A(/* fields */)).B; // changed
- | ~~~~~~~~~~~~~~~~~~~~~~
+9 | let _ = Foo::B; // changed
+ | ~~
error[E0423]: expected value, found enum `Foo`
--> diag8.rs:10:13
|
10 | let _ = Foo.D(42); // no change
| ^^^
|
note: the enum is defined here
--> diag8.rs:1:1
|
1 | / enum Foo {
2 | | A(u32),
3 | | B,
4 | | C { x: u32 },
5 | | }
| |_^
help: you might have meant to use the following enum variant
|
10 | let _ = Foo::B.D(42); // no change
| ~~~~~~
help: alternatively, the following enum variant is available
|
10 | let _ = (Foo::A(/* fields */)).D(42); // no change
| ~~~~~~~~~~~~~~~~~~~~~~
error[E0423]: expected value, found enum `Foo`
--> diag8.rs:11:13
|
11 | let _ = Foo.D; // no change
| ^^^
|
note: the enum is defined here
--> diag8.rs:1:1
|
1 | / enum Foo {
2 | | A(u32),
3 | | B,
4 | | C { x: u32 },
5 | | }
| |_^
help: you might have meant to use the following enum variant
|
11 | let _ = Foo::B.D; // no change
| ~~~~~~
help: alternatively, the following enum variant is available
|
11 | let _ = (Foo::A(/* fields */)).D; // no change
| ~~~~~~~~~~~~~~~~~~~~~~
error[E0423]: expected function, tuple struct or tuple variant, found enum `Foo`
--> diag8.rs:12:13
|
12 | let _ = Foo(42); // no change
| ^^^ help: try to construct one of the enum's variants: `Foo::A`
|
= help: you might have meant to construct the enum's non-tuple variant
note: the enum is defined here
--> diag8.rs:1:1
|
1 | / enum Foo {
2 | | A(u32),
3 | | B,
4 | | C { x: u32 },
5 | | }
| |_^
error: aborting due to 5 previous errors
```
</details>
[^1]: or if it's a field expression and a tuple variant, that they meant to refer the variant constructor.
```
warning: cannot find macro `in_root` in the crate root
--> $DIR/key-value-expansion-scope.rs:1:10
|
LL | #![doc = in_root!()]
| ^^^^^^^ not found in the crate root
|
= warning: this was previously accepted by the compiler but is being phased out; it will become a hard error in a future release!
= note: for more information, see issue #124535 <https://github.com/rust-lang/rust/issues/124535>
= help: import `macro_rules` with `use` to make it callable above its definition
= note: `#[warn(out_of_scope_macro_calls)]` on by default
```
Suggest replacing `.` with `::` when encountering "expected value, found enum":
- in a method-call expression and the method has the same name as a tuple variant
- in a field-access expression and the field has the same name as a unit or tuple variant
When `Foo.field` or `Foo.method()` exprs are encountered, suggest `Foo::field` or `Foo::method()` when Foo is a type alias, not just
a struct, trait, or module.
Also rename test for this suggestion from issue-22692.rs to something more meaningful.
This adds panicking Hash impls for several resolver types that don't
actually satisfy this condition. It's not obvious to me that
rustc_resolve actually upholds the Interned guarantees but fixing that
seems pretty hard (the structures have at minimum some interior
mutability, so it's not really recursively hashable in place...).
This commit takes advantage of a feature in pulldown-cmark that
makes the list of link definitions available to the consuming
application. It produces unresolved link warnings for refdefs
that aren't used, and can now produce exact spans for the dest
even when it has escapes.
Add a TyPat in the AST to reuse the generic arg lowering logic
This simplifies ast lowering significantly with little cost to the pattern types parser.
Also fixes any problems we've had with generic args (well, pushes any problems onto the `generic_const_exprs` feature gate)
follow-up to https://github.com/rust-lang/rust/pull/136284#discussion_r1939292367
r? ``@BoxyUwU``
Update bootstrap compiler and rustfmt
The rustfmt version we previously used formats things differently from what the latest nightly rustfmt does. This causes issues for subtrees that get formatted both in-tree and in their own repo. Updating the rustfmt used in-tree solves those issues. Also bumped the bootstrap compiler as the stage0 update command always updates both at the same
time.
tree-wide: parallel: Fully removed all `Lrc`, replaced with `Arc`
tree-wide: parallel: Fully removed all `Lrc`, replaced with `Arc`
This is continuation of https://github.com/rust-lang/rust/pull/132282 .
I'm pretty sure I did everything right. In particular, I searched all occurrences of `Lrc` in submodules and made sure that they don't need replacement.
There are other possibilities, through.
We can define `enum Lrc<T> { Rc(Rc<T>), Arc(Arc<T>) }`. Or we can make `Lrc` a union and on every clone we can read from special thread-local variable. Or we can add a generic parameter to `Lrc` and, yes, this parameter will be everywhere across all codebase.
So, if you think we should take some alternative approach, then don't merge this PR. But if it is decided to stick with `Arc`, then, please, merge.
cc "Parallel Rustc Front-end" ( https://github.com/rust-lang/rust/issues/113349 )
r? SparrowLii
`@rustbot` label WG-compiler-parallel
includes post-developed commit: do not suggest internal-only keywords as corrections to parse failures.
includes post-developed commit: removed tabs that creeped in into rustfmt tool source code.
includes post-developed commit, placating rustfmt self dogfooding.
includes post-developed commit: add backquotes to prevent markdown checking from trying to treat an attr as a markdown hyperlink/
includes post-developed commit: fix lowering to keep contracts from being erroneously inherited by nested bodies (like closures).
Rebase Conflicts:
- compiler/rustc_parse/src/parser/diagnostics.rs
- compiler/rustc_parse/src/parser/item.rs
- compiler/rustc_span/src/hygiene.rs
Remove contracts keywords from diagnostic messages
Reword resolve errors caused by likely missing crate in dep tree
Reword label and add `help`:
```
error[E0432]: unresolved import `some_novel_crate`
--> f704.rs:1:5
|
1 | use some_novel_crate::Type;
| ^^^^^^^^^^^^^^^^ use of unresolved module or unlinked crate `some_novel_crate`
|
= help: if you wanted to use a crate named `some_novel_crate`, use `cargo add some_novel_crate` to add it to your `Cargo.toml`
```
Fix#133137.
```
error[E0432]: unresolved import `some_novel_crate`
--> file.rs:1:5
|
1 | use some_novel_crate::Type;
| ^^^^^^^^^^^^^^^^ use of unresolved module or unlinked crate `some_novel_crate`
```
On resolve errors where there might be a missing crate, mention `cargo add foo`:
```
error[E0433]: failed to resolve: use of unresolved module or unlinked crate `nope`
--> $DIR/conflicting-impl-with-err.rs:4:11
|
LL | impl From<nope::Thing> for Error {
| ^^^^ use of unresolved module or unlinked crate `nope`
|
= help: if you wanted to use a crate named `nope`, use `cargo add nope` to add it to your `Cargo.toml`
```
rustc_resolve: use structured fields in traces
I think this crate was written before `tracing` was adopted, and was manually writing fields into trace logs instead of using structured fields.
I kept function names in the trace messages even though I added `#[instrument]` invocations so that the events will be in named spans, wasn't sure if spans are always printed.
Rollup of 7 pull requests
Successful merges:
- #135542 (Add the concrete syntax for precise capturing to 1.82 release notes.)
- #135700 (Emit single privacy error for struct literal with multiple private fields and add test for `default_field_values` privacy)
- #135722 (make it possible to use ci-rustc on tarball sources)
- #135729 (Add debug assertions to compiler profile)
- #135736 (rustdoc: Fix flaky doctest test)
- #135738 (Replace usages of `map_or(bool, ...)` with `is_{some_and|none_or|ok_and}`)
- #135747 (Rename FileName::QuoteExpansion to CfgSpec)
r? `@ghost`
`@rustbot` modify labels: rollup
fully de-stabilize all custom inner attributes
`#![test]` and `#![rustfmt::skip]` were accidentally accepted in more places than they should. These have been marked as soft-unstable since forever (https://github.com/rust-lang/rust/pull/82399) and shown in future-compat reports since Rust 1.77 (https://github.com/rust-lang/rust/pull/116274).
Cc `@rust-lang/lang` `@petrochenkov`
Treat safe target_feature functions as unsafe by default [less invasive variant]
This unblocks
* #134090
As I stated in https://github.com/rust-lang/rust/pull/134090#issuecomment-2541332415 I think the previous impl was too easy to get wrong, as by default it treated safe target feature functions as safe and had to add additional checks for when they weren't. Now the logic is inverted. By default they are unsafe and you have to explicitly handle safe target feature functions.
This is the less (imo) invasive variant of #134317, as it doesn't require changing the Safety enum, so it only affects FnDefs and nothing else, as it should.
This commit seeks to stabilize the `#[diagnostic::do_not_recommend]`
attribute.
This attribute was first proposed as `#[do_not_recommend`] attribute in
RFC 2397 (https://github.com/rust-lang/rfcs/pull/2397). It gives the
crate authors the ability to not suggest to the compiler to not show
certain traits in it's error messages. With the presence of the
`#[diagnostic]` tool attribute namespace it was decided to move the
attribute there, as that lowers the amount of guarantees the compiler
needs to give about the exact way this influences error messages. It
turns the attribute into a hint which can be ignored. In addition to the
original proposed functionality this attribute now also hides the marked
trait in help messages ("This trait is implemented by: ").
The attribute does not accept any argument and can only be placed on
trait implementations. If it is placed somewhere else a lint warning is
emitted and the attribute is otherwise ignored. If an argument is
detected a lint warning is emitted and the argument is ignored. This
follows the rules outlined by the diagnostic namespace.
This attribute allows crates like diesel to improve their error messages
drastically. The most common example here is the following error
message:
```
error[E0277]: the trait bound `&str: Expression` is not satisfied
--> /home/weiznich/Documents/rust/rust/tests/ui/diagnostic_namespace/do_not_recommend.rs:53:15
|
LL | SelectInt.check("bar");
| ^^^^^ the trait `Expression` is not implemented for `&str`, which is required by `&str: AsExpression<Integer>`
|
= help: the following other types implement trait `Expression`:
Bound<T>
SelectInt
note: required for `&str` to implement `AsExpression<Integer>`
--> /home/weiznich/Documents/rust/rust/tests/ui/diagnostic_namespace/do_not_recommend.rs:26:13
|
LL | impl<T, ST> AsExpression<ST> for T
| ^^^^^^^^^^^^^^^^ ^
LL | where
LL | T: Expression<SqlType = ST>,
| ------------------------ unsatisfied trait bound introduced here
```
By applying the new attribute to the wild card trait implementation of
`AsExpression` for `T: Expression` the error message becomes:
```
error[E0277]: the trait bound `&str: AsExpression<Integer>` is not satisfied
--> $DIR/as_expression.rs:55:15
|
LL | SelectInt.check("bar");
| ^^^^^ the trait `AsExpression<Integer>` is not implemented for `&str`
|
= help: the trait `AsExpression<Text>` is implemented for `&str`
= help: for that trait implementation, expected `Text`, found `Integer`
```
which makes it much easier for users to understand that they are facing
a type mismatch.
Other explored example usages included
* This standard library error message: https://github.com/rust-lang/rust/pull/128008
* That bevy derived example:
e1f3068995/tests/ui/diagnostic_namespace/do_not_recommend/supress_suggestions_in_help.rs (No
more tuple pyramids)
Fixes#51992
Re-export more `rustc_span::symbol` things from `rustc_span`.
`rustc_span::symbol` defines some things that are re-exported from `rustc_span`, such as `Symbol` and `sym`. But it doesn't re-export some closely related things such as `Ident` and `kw`. So you can do `use rustc_span::{Symbol, sym}` but you have to do `use rustc_span::symbol::{Ident, kw}`, which is inconsistent for no good reason.
This commit re-exports `Ident`, `kw`, and `MacroRulesNormalizedIdent`, and changes many `rustc_span::symbol::` qualifiers to `rustc_span::`. This is a 300+ net line of code reduction, mostly because many files with two `use rustc_span` items can be reduced to one.
r? `@jieyouxu`
`rustc_span::symbol` defines some things that are re-exported from
`rustc_span`, such as `Symbol` and `sym`. But it doesn't re-export some
closely related things such as `Ident` and `kw`. So you can do `use
rustc_span::{Symbol, sym}` but you have to do `use
rustc_span::symbol::{Ident, kw}`, which is inconsistent for no good
reason.
This commit re-exports `Ident`, `kw`, and `MacroRulesNormalizedIdent`,
and changes many `rustc_span::symbol::` qualifiers in `compiler/` to
`rustc_span::`. This is a 200+ net line of code reduction, mostly
because many files with two `use rustc_span` items can be reduced to
one.
Rollup of 7 pull requests
Successful merges:
- #133265 (Add a range argument to vec.extract_if)
- #133801 (Promote powerpc64le-unknown-linux-musl to tier 2 with host tools)
- #134323 (coverage: Dismantle `map_data.rs` by moving its responsibilities elsewhere)
- #134378 (An octuple of polonius fact generation cleanups)
- #134408 (Regression test for RPIT inheriting lifetime from projection)
- #134423 (bootstrap: use specific-purpose ui test path for `test_valid` self-test)
- #134426 (Fix typo in uint_macros.rs)
Failed merges:
- #133103 (Pass FnAbi to find_mir_or_eval_fn)
r? `@ghost`
`@rustbot` modify labels: rollup
Split up attribute parsing code and move data types to `rustc_attr_data_structures`
This change renames `rustc_attr` to `rustc_attr_parsing`, and splits up the parsing code. At the same time, all the data types used move to `rustc_attr_data_structures`. This is in preparation of also having a third crate: `rustc_attr_validation`
I initially envisioned this as two separate PRs, but I think doing it in one go reduces the number of ways others would have to rebase their changes on this. However, I can still split them.
r? `@oli-obk` (we already discussed how this is a first step in a larger plan)
For a more detailed plan on how attributes are going to change, see https://github.com/rust-lang/rust/issues/131229
Edit: this looks like a giant PR, but the changes are actually rather trivial. Each commit is reviewable on its own, and mostly moves code around. No new logic is added.
Keep track of patterns that could have introduced a binding, but didn't
When we recover from a pattern parse error, or a pattern uses `..`, we keep track of that and affect resolution error for missing bindings that could have been provided by that pattern. We differentiate between `..` and parse recovery. We silence resolution errors likely caused by the pattern parse error.
```
error[E0425]: cannot find value `title` in this scope
--> $DIR/struct-pattern-with-missing-fields-resolve-error.rs:18:30
|
LL | if let Website { url, .. } = website {
| ------------------- this pattern doesn't include `title`, which is available in `Website`
LL | println!("[{}]({})", title, url);
| ^^^^^ not found in this scope
```
Fix#74863.
When we recover from a pattern parse error, or a pattern uses `..`, we keep track of that and affect resolution error for missing bindings that could have been provided by that pattern. We differentiate between `..` and parse recovery. We silence resolution errors likely caused by the pattern parse error.
```
error[E0425]: cannot find value `title` in this scope
--> $DIR/struct-pattern-with-missing-fields-resolve-error.rs:19:30
|
LL | println!("[{}]({})", title, url);
| ^^^^^ not found in this scope
|
note: `Website` has a field `title` which could have been included in this pattern, but it wasn't
--> $DIR/struct-pattern-with-missing-fields-resolve-error.rs:17:12
|
LL | / struct Website {
LL | | url: String,
LL | | title: Option<String> ,
| | ----- defined here
LL | | }
| |_-
...
LL | if let Website { url, .. } = website {
| ^^^^^^^^^^^^^^^^^^^ this pattern doesn't include `title`, which is available in `Website`
```
Fix#74863.
Add AST support for unsafe binders
I'm splitting up #130514 into pieces. It's impossible for me to keep up with a huge PR like that. I'll land type system support for this next, probably w/o MIR lowering, which will come later.
r? `@oli-obk`
cc `@BoxyUwU` and `@lcnr` who also may want to look at this, though this PR doesn't do too much yet
When we expand a `mod foo;` and parse `foo.rs`, we now track whether that file had an unrecovered parse error that reached the end of the file. If so, we keep that information around. When resolving a path like `foo::bar`, we do not emit any errors for "`bar` not found in `foo`", as we know that the parse error might have caused `bar` to not be parsed and accounted for.
When this happens in an existing project, every path referencing `foo` would be an irrelevant compile error. Instead, we now skip emitting anything until `foo.rs` is fixed. Tellingly enough, we didn't have any test for errors caused by `mod` expansion.
Fix#97734.
Initial implementation of `#[feature(default_field_values]`, proposed in https://github.com/rust-lang/rfcs/pull/3681.
Support default fields in enum struct variant
Allow default values in an enum struct variant definition:
```rust
pub enum Bar {
Foo {
bar: S = S,
baz: i32 = 42 + 3,
}
}
```
Allow using `..` without a base on an enum struct variant
```rust
Bar::Foo { .. }
```
`#[derive(Default)]` doesn't account for these as it is still gating `#[default]` only being allowed on unit variants.
Support `#[derive(Default)]` on enum struct variants with all defaulted fields
```rust
pub enum Bar {
#[default]
Foo {
bar: S = S,
baz: i32 = 42 + 3,
}
}
```
Check for missing fields in typeck instead of mir_build.
Expand test with `const` param case (needs `generic_const_exprs` enabled).
Properly instantiate MIR const
The following works:
```rust
struct S<A> {
a: Vec<A> = Vec::new(),
}
S::<i32> { .. }
```
Add lint for default fields that will always fail const-eval
We *allow* this to happen for API writers that might want to rely on users'
getting a compile error when using the default field, different to the error
that they would get when the field isn't default. We could change this to
*always* error instead of being a lint, if we wanted.
This will *not* catch errors for partially evaluated consts, like when the
expression relies on a const parameter.
Suggestions when encountering `Foo { .. }` without `#[feature(default_field_values)]`:
- Suggest adding a base expression if there are missing fields.
- Suggest enabling the feature if all the missing fields have optional values.
- Suggest removing `..` if there are no missing fields.
Use edition of `macro_rules` when compiling the macro
This changes the edition assigned to a macro_rules macro when it is compiled to use the edition of where the macro came from instead of the local crate's edition.
This fixes a problem when a macro_rules macro is created by a proc-macro. Previously that macro would be tagged with the local edition, which would cause problems with using the correct edition behavior inside the macro. For example, the check for unsafe attributes would cause errors in 2024 when using proc-macros from older editions.
This is partially related to https://github.com/rust-lang/rust/issues/132906. Unfortunately this is only a half fix for that issue. It fixes the error that happens in 2024, but does not fix the lint firing in 2021. I'm still trying to think of some way to fix that, but I'm running low on ideas.
only store valid proc macro item for doc link
Fixes#132743
The definition item can be detected if it is exported in the doc, so store these items rather than skipping.
r? `@petrochenkov`
Update TRPL to add new Chapter 17: Async and Await
- Add support to `rustbook` to pass through the `-L`/`--library-path` flag to `mdbook` so that references to the `trpl` crate
- Build the `trpl` crate as part of the book tests. Make it straightforward to add other such book dependencies in the future if needed by implementing that in a fairly general way.
- Update the submodule for the book to pull in the new chapter on async and await, as well as a number of other fixes. This will happen organically/automatically in a week, too, but this lets me group this change with the next one:
- Update the compiler messages which reference the existing chapters 17–20, which are now chapters 18-21. There are only two, both previously referencing chapter 18.
- Update the UI tests which reference the compiler message outputs.
Re-delay a resolve `bug` related to `Self`-ctor in patterns
For the code pattern reported in <https://github.com/rust-lang/rust/issues/133272>,
```rs
impl Foo {
fn fun() {
let S { ref Self } = todo!();
}
}
```
<https://github.com/rust-lang/rust/pull/121208> converted this to a `span_bug` from a `span_delayed_bug` because this specific self-ctor code pattern lacked test coverage. It turns out this can be hit but we just lacked test coverage, so change it back to a `span_delayed_bug` and add a targeted test case.
Follow-up to #121208, cc ``@nnethercote`` (very good exercise to expose our test coverage gaps).
Fixes#133272.
For the code pattern reported in
<https://github.com/rust-lang/rust/issues/133272>,
```rs
impl Foo {
fn fun() {
let S { ref Self } = todo!();
}
}
```
<https://github.com/rust-lang/rust/pull/121208> converted this to a
`span_bug` from a `span_delayed_bug` because this specific self-ctor
code pattern lacked test coverage. It turns out this can be hit but we
just lacked test coverage, so change it back to a `span_delayed_bug` and
add a target tested case.
Unify FnKind between AST visitors and make WalkItemKind more straight forward
Unifying `FnKind` requires a bunch of changes to `WalkItemKind::walk` signature so I'll change them in one go
related to #128974
r? `@petrochenkov`
It was added in #115367 for anonymous ADTs. Those changes were then
reverted in #131045, but `empty_disambiguator` was left behind, perhaps
by mistake. It seems to be unnecessary.
`resolve_ident_in_module` is a very thin wrapper around
`resolve_ident_in_module_ext`, and `resolve_ident_in_module_unadjusted`
is a very thin wrapper around `resolve_ident_in_module_unadjusted_ext`.
The wrappers make the call sites slightly more concise, but I don't
think that's worth the extra code and indirection.
This commit removes the two wrappers and removes the `_ext` suffixes
from the inner methods.
Don't use `maybe_unwrap_block` when checking for macro calls in a block expr
Fixes#131915
Using `maybe_unwrap_block` to determine if we are looking at a `{ mac_call!{} }` will fail sometimes as `mac_call!{}` could be a `StmtKind::MacCall` not a `StmtKind::Expr`. This caused the def collector to think that `{ mac_call!{} }` was a non-trivial const argument and create a definition for it even though it should not.
r? `@compiler-errors` cc `@camelid`
Properly suggest `E::assoc` when we encounter `E::Variant::assoc`
Use the right span when encountering an enum variant followed by an associated item so we don't lose the associated item in the resulting code.
Do not suggest the thing twice, once as a removal of the associated item and a second time as a typo suggestion.
Use the right span when encountering an enum variant followed by an associated item so we don't lose the associated item in the resulting code.
Do not suggest the thing twice, once as a removal of the associated item and a second time as a typo suggestion.
Rollup of 9 pull requests
Successful merges:
- #122670 (Fix bug where `option_env!` would return `None` when env var is present but not valid Unicode)
- #131095 (Use environment variables instead of command line arguments for merged doctests)
- #131339 (Expand set_ptr_value / with_metadata_of docs)
- #131652 (Move polarity into `PolyTraitRef` rather than storing it on the side)
- #131675 (Update lint message for ABI not supported)
- #131681 (Fix up-to-date checking for run-make tests)
- #131702 (Suppress import errors for traits that couldve applied for method lookup error)
- #131703 (Resolved python deprecation warning in publish_toolstate.py)
- #131710 (Remove `'apostrophes'` from `rustc_parse_format`)
r? `@ghost`
`@rustbot` modify labels: rollup
Add `&pin (mut|const) T` type position sugar
This adds parser support for `&pin mut T` and `&pin const T` references. These are desugared to `Pin<&mut T>` and `Pin<&T>` in the AST lowering phases.
This PR currently includes #130526 since that one is in the commit queue. Only the most recent commits (bd450027eb4a94b814a7dd9c0fa29102e6361149 and following) are new.
Tracking:
- #130494
r? `@compiler-errors`
Retire the `unnamed_fields` feature for now
`#![feature(unnamed_fields)]` was implemented in part in #115131 and #115367, however work on that feature has (afaict) stalled and in the mean time there have been some concerns raised (e.g.[^1][^2]) about whether `unnamed_fields` is worthwhile to have in the language, especially in its current desugaring. Because it represents a compiler implementation burden including a new kind of anonymous ADT and additional complication to field selection, and is quite prone to bugs today, I'm choosing to remove the feature.
However, since I'm not one to really write a bunch of words, I'm specifically *not* going to de-RFC this feature. This PR essentially *rolls back* the state of this feature to "RFC accepted but not yet implemented"; however if anyone wants to formally unapprove the RFC from the t-lang side, then please be my guest. I'm just not totally willing to summarize the various language-facing reasons for why this feature is or is not worthwhile, since I'm coming from the compiler side mostly.
Fixes#117942Fixes#121161Fixes#121263Fixes#121299Fixes#121722Fixes#121799Fixes#126969Fixes#131041
Tracking:
* https://github.com/rust-lang/rust/issues/49804
[^1]: https://rust-lang.zulipchat.com/#narrow/stream/213817-t-lang/topic/Unnamed.20struct.2Funion.20fields
[^2]: https://github.com/rust-lang/rust/issues/49804#issuecomment-1972619108
```
error: expected a pattern, found an expression
--> f889.rs:3:13
|
3 | let (x, y.drop()) = (1, 2); //~ ERROR
| ^^^^^^^^ not a pattern
|
= note: arbitrary expressions are not allowed in patterns: <https://doc.rust-lang.org/book/ch18-00-patterns.html>
error[E0532]: expected a pattern, found a function call
--> f889.rs:2:13
|
2 | let (x, drop(y)) = (1, 2); //~ ERROR
| ^^^^ not a tuple struct or tuple variant
|
= note: function calls are not allowed in patterns: <https://doc.rust-lang.org/book/ch18-00-patterns.html>
```
Fix#97200.