RFC-2229: Implement Precise Capture Analysis
### This PR introduces
- Feature gate for RFC-2229 (incomplete) `capture_disjoint_field`
- Rustc Attribute to print out the capture analysis `rustc_capture_analysis`
- Precise capture analysis
### Description of the analysis
1. If the feature gate is not set then all variables that are not local to the closure will be added to the list of captures. (This is for backcompat)
2. The rest of the analysis is based entirely on how the captured `Place`s are used within the closure. Precise information (i.e. projections) about the `Place` is maintained throughout.
3. To reduce the amount of information we need to keep track of, we do a minimization step. In this step, we determine a list such that no Place within this list represents an ancestor path to another entry in the list. Check rust-lang/project-rfc-2229#9 for more detailed examples.
4. To keep the compiler functional as before we implement a Bridge between the results of this new analysis to existing data structures used for closure captures. Note the new capture analysis results are only part of MaybeTypeckTables that is the information is only available during typeck-ing.
### Known issues
- Statements like `let _ = x` will make the compiler ICE when used within a closure with the feature enabled. More generally speaking the issue is caused by `let` statements that create no bindings and are init'ed using a Place expression.
### Testing
We removed the code that would handle the case where the feature gate is not set, to enable the feature as default and did a bors try and perf run. More information here: #78762
### Thanks
This has been slowly in the works for a while now.
I want to call out `@Azhng` `@ChrisPardy` `@null-sleep` `@jenniferwills` `@logmosier` `@roxelo` for working on this and the previous PRs that led up to this, `@nikomatsakis` for guiding us.
Closesrust-lang/project-rfc-2229#7Closesrust-lang/project-rfc-2229#9Closesrust-lang/project-rfc-2229#6Closesrust-lang/project-rfc-2229#19
r? `@nikomatsakis`
Allow making `RUSTC_BOOTSTRAP` conditional on the crate name
Motivation: This came up in the [Zulip stream](https://rust-lang.zulipchat.com/#narrow/stream/233931-t-compiler.2Fmajor-changes/topic/Require.20users.20to.20confirm.20they.20know.20RUSTC_.E2.80.A6.20compiler-team.23350/near/208403962) for https://github.com/rust-lang/compiler-team/issues/350.
See also https://github.com/rust-lang/cargo/pull/6608#issuecomment-458546258; this implements https://github.com/rust-lang/cargo/issues/6627.
The goal is for this to eventually allow prohibiting setting `RUSTC_BOOTSTRAP` in build.rs (https://github.com/rust-lang/cargo/issues/7088).
## User-facing changes
- `RUSTC_BOOTSTRAP=1` still works; there is no current plan to remove this.
- Things like `RUSTC_BOOTSTRAP=0` no longer activate nightly features. In practice this shouldn't be a big deal, since `RUSTC_BOOTSTRAP` is the opposite of stable and everyone uses `RUSTC_BOOTSTRAP=1` anyway.
- `RUSTC_BOOTSTRAP=x` will enable nightly features only for crate `x`.
- `RUSTC_BOOTSTRAP=x,y` will enable nightly features only for crates `x` and `y`.
## Implementation changes
The main change is that `UnstableOptions::from_environment` now requires
an (optional) crate name. If the crate name is unknown (`None`), then the new feature is not available and you still have to use `RUSTC_BOOTSTRAP=1`. In practice this means the feature is only available for `--crate-name`, not for `#![crate_name]`; I'm interested in supporting the second but I'm not sure how.
Other major changes:
- Added `Session::is_nightly_build()`, which uses the `crate_name` of
the session
- Added `nightly_options::match_is_nightly_build`, a convenience method
for looking up `--crate-name` from CLI arguments.
`Session::is_nightly_build()`should be preferred where possible, since
it will take into account `#![crate_name]` (I think).
- Added `unstable_features` to `rustdoc::RenderOptions`
I'm not sure whether this counts as T-compiler or T-lang; _technically_ RUSTC_BOOTSTRAP is an implementation detail, but it's been used so much it seems like this counts as a language change too.
r? `@joshtriplett`
cc `@Mark-Simulacrum` `@hsivonen`
rustc_target: Further cleanup use of target options
Follow up to https://github.com/rust-lang/rust/pull/77729.
Implements items 2 and 4 from the list in https://github.com/rust-lang/rust/pull/77729#issue-500228243.
The first commit collapses uses of `target.options.foo` into `target.foo`.
The second commit renames some target options to avoid tautology:
`target.target_endian` -> `target.endian`
`target.target_c_int_width` -> `target.c_int_width`
`target.target_os` -> `target.os`
`target.target_env` -> `target.env`
`target.target_vendor` -> `target.vendor`
`target.target_family` -> `target.os_family`
`target.target_mcount` -> `target.mcount`
r? `@Mark-Simulacrum`
rustc_ast: Do not panic by default when visiting macro calls
Panicking by default made sense when we didn't have HIR or MIR and everything worked on AST, but now all AST visitors run early and majority of them have to deal with macro calls, often by ignoring them.
The second commit renames `visit_mac` to `visit_mac_call`, the corresponding structures were renamed earlier in https://github.com/rust-lang/rust/pull/69589.
with an eye on merging `TargetOptions` into `Target`.
`TargetOptions` as a separate structure is mostly an implementation detail of `Target` construction, all its fields logically belong to `Target` and available from `Target` through `Deref` impls.
The main change is that `UnstableOptions::from_environment` now requires
an (optional) crate name. If the crate name is unknown (`None`), then the new feature is not available and you still have to use `RUSTC_BOOTSTRAP=1`. In practice this means the feature is only available for `--crate-name`, not for `#![crate_name]`; I'm interested in supporting the second but I'm not sure how.
Other major changes:
- Added `Session::is_nightly_build()`, which uses the `crate_name` of
the session
- Added `nightly_options::match_is_nightly_build`, a convenience method
for looking up `--crate-name` from CLI arguments.
`Session::is_nightly_build()`should be preferred where possible, since
it will take into account `#![crate_name]` (I think).
- Added `unstable_features` to `rustdoc::RenderOptions`
There is a user-facing change here: things like `RUSTC_BOOTSTRAP=0` no
longer active nightly features. In practice this shouldn't be a big
deal, since `RUSTC_BOOTSTRAP` is the opposite of stable and everyone
uses `RUSTC_BOOTSTRAP=1` anyway.
- Add tests
Check against `Cheat`, not whether nightly features are allowed.
Nightly features are always allowed on the nightly channel.
- Only call `is_nightly_build()` once within a function
- Use booleans consistently for rustc_incremental
Sessions can't be passed through threads, so `read_file` couldn't take a
session. To be consistent, also take a boolean in `write_file_header`.
Improve errors about #[deprecated] attribute
This change:
1. Turns `#[deprecated]` on a trait impl block into an error, which fixes#78625;
2. Changes these and other errors about `#[deprecated]` to use the span of the attribute instead of the item; and
3. Turns this error into a lint, to make sure it can be capped with `--cap-lints` and doesn't break any existing dependencies.
Can be reviewed per commit.
---
Example:
```rust
struct X;
#[deprecated = "a"]
impl Default for X {
#[deprecated = "b"]
fn default() -> Self {
X
}
}
```
Before:
```
error: This deprecation annotation is useless
--> src/main.rs:6:5
|
6 | / fn default() -> Self {
7 | | X
8 | | }
| |_____^
```
After:
```
error: this `#[deprecated]' annotation has no effect
--> src/main.rs:3:1
|
3 | #[deprecated = "a"]
| ^^^^^^^^^^^^^^^^^^^ help: try removing the deprecation attribute
|
= note: `#[deny(useless_deprecated)]` on by default
error: this `#[deprecated]' annotation has no effect
--> src/main.rs:5:5
|
5 | #[deprecated = "b"]
| ^^^^^^^^^^^^^^^^^^^ help: try removing the deprecation attribute
```
replace `#[allow_internal_unstable]` with `#[rustc_allow_const_fn_unstable]` for `const fn`s
`#[allow_internal_unstable]` is currently used to side-step feature gate and stability checks.
While it was originally only meant to be used only on macros, its use was expanded to `const fn`s.
This pr adds stricter checks for the usage of `#[allow_internal_unstable]` (only on macros) and introduces the `#[rustc_allow_const_fn_unstable]` attribute for usage on `const fn`s.
This pr does not change any of the functionality associated with the use of `#[allow_internal_unstable]` on macros or the usage of `#[rustc_allow_const_fn_unstable]` (instead of `#[allow_internal_unstable]`) on `const fn`s (see https://github.com/rust-lang/rust/issues/69399#issuecomment-712911540).
Note: The check for `#[rustc_allow_const_fn_unstable]` currently only validates that the attribute is used on a function, because I don't know how I would check if the function is a `const fn` at the place of the check. I therefore openend this as a 'draft pull request'.
Closesrust-lang/rust#69399
r? @oli-obk
fix def collector for impl trait
fixes#77329
We now consistently make `impl Trait` a hir owner, requiring some special casing for synthetic generic params.
r? `@eddyb`
passes: `check_attr` on more targets
This PR modifies `check_attr` so that:
- Enum variants are now checked (some attributes would not have been prohibited on variants previously).
- `check_expr_attributes` and `check_stmt_attributes` are removed as `check_attributes` can perform the same checks. This means that codegen attribute errors aren't shown if there are other errors first (e.g. from other attributes, as shown in `src/test/ui/macros/issue-68060.rs` changes below).
The validation was introduced in 3a63bf0299
without strict validation of functions, e. g. all function types were
allowed.
Now the validation only allows `const fn`s.
Mark inout asm! operands as used in liveness pass
Variables used in `inout` operands in inline assembly (that is, they're used as both input and output to some arbitrary assembly instruction) are being marked as read and written, but are not marked as being used in the RWU table during the liveness pass. This can result in such expressions triggering an unused variable lint warning. This is incorrect behavior- reads without uses are currently only used for compound assignments. We conservatively assume that an `inout` operand is being read and used in the context of the assembly instruction.
Closes#77915
Preparation for a subsequent change that replaces
rustc_target::config::Config with its wrapped Target.
On its own, this commit breaks the build. I don't like making
build-breaking commits, but in this instance I believe that it
makes review easier, as the "real" changes of this PR can be
seen much more easily.
Result of running:
find compiler/ -type f -exec sed -i -e 's/target\.target\([)\.,; ]\)/target\1/g' {} \;
find compiler/ -type f -exec sed -i -e 's/target\.target$/target/g' {} \;
find compiler/ -type f -exec sed -i -e 's/target.ptr_width/target.pointer_width/g' {} \;
./x.py fmt
Implement Make `handle_alloc_error` default to panic (for no_std + liballoc)
Related: https://github.com/rust-lang/rust/issues/66741
Guarded with `#![feature(default_alloc_error_handler)]` a default
`alloc_error_handler` is called, if a custom allocator is used and no
other custom `#[alloc_error_handler]` is defined.
Related: https://github.com/rust-lang/rust/issues/66741
Guarded with `#![feature(default_alloc_error_handler)]` a default
`alloc_error_handler` is called, if a custom allocator is used and no
other custom `#[alloc_error_handler]` is defined.
The panic message does not contain the size anymore, because it would
pull in the fmt machinery, which would blow up the code size
significantly.