In two cases where this ordering was used, I've replaced the sorting
to use a key that does not include DefId. I'm not sure this is correct
in terms of our goals from #90317, or otherwise.
Pretty printer algorithm revamp step 2
This PR follows #92923 as a second chunk of modernizations backported from https://github.com/dtolnay/prettyplease into rustc_ast_pretty.
I've broken this up into atomic commits that hopefully are sensible in isolation. At every commit, the pretty printer is compilable and has runtime behavior that is identical to before and after the PR. None of the refactoring so far changes behavior.
The general theme of this chunk of commits is: the logic in the old pretty printer is doing some very basic things (pushing and popping tokens on a ring buffer) but expressed in a too-low-level way that I found makes it quite complicated/subtle to reason about. There are a number of obvious invariants that are "almost true" -- things like `self.left == self.buf.offset` and `self.right == self.buf.offset + self.buf.data.len()` and `self.right_total == self.left_total + self.buf.data.sum()`. The reason these things are "almost true" is the implementation tends to put updating one side of the invariant unreasonably far apart from updating the other side, leaving the invariant broken while unrelated stuff happens in between. The following code from master is an example of this:
e5e2b0be26/compiler/rustc_ast_pretty/src/pp.rs (L314-L317)
In this code the `advance_right` is reserving an entry into which to write a next token on the right side of the ring buffer, the `check_stack` is doing something totally unrelated to the right boundary of the ring buffer, and the `scan_push` is actually writing the token we previously reserved space for. Much of what this PR is doing is rearranging code to shrink the amount of stuff in between when an invariant is broken to when it is restored, until the whole thing can be factored out into one indivisible method call on the RingBuffer type.
The end state of the PR is that we can entirely eliminate `self.left` (because it's now just equal to `self.buf.offset` always) and `self.right` (because it's equal to `self.buf.offset + self.buf.data.len()` always) and the whole `Token::Eof` state which used to be the value of tokens that have been reserved space for but not yet written.
I found without these changes the pretty printer implementation to be hard to reason about and I wasn't able to confidently introduce improvements like trailing commas in `prettyplease` until after this refactor. The logic here is 43 years old at this point (Graydon translated it as directly as possible from the 1979 pretty printing paper) and while there are advantages to following the paper as closely as possible, in `prettyplease` I decided if we're going to adapt the algorithm to work better for Rust syntax, it was worthwhile making it easier to follow than the original.
mangling_v0: Skip extern blocks during mangling
There's no need to include the dummy `Nt` into the symbol name, items in extern blocks belong to their parent modules for all purposes except for inheriting the ABI and attributes.
Follow up to https://github.com/rust-lang/rust/pull/92032
(There's also a drive-by fix to the `rust-demangler` tool's tests, which don't run on CI, I initially attempted using them for testing this PR.)
Remove some unused ordering derivations based on `DefId`
Like #93018, this removes some unused/unneeded ordering derivations as part of ongoing work on #90317. Here, these changes are aimed at making https://github.com/rust-lang/rust/pull/90749 easier to review, test, and merge.
r? `@cjgillot`
Move expr- and item-related pretty printing functions to modules
Currently *compiler/rustc_ast_pretty/src/pprust/state.rs* is 2976 lines on master. The `tidy` limit is 3000, which is blocking #92243.
This PR adds a `mod expr;` and `mod item;` to move logic related to those AST nodes out of the single huge file.
Use iterator instead of recursion in `codegen_place`
This PR fixes the FIXME in `codegen_place` about using iterator instead of recursion when processing the `projection` field in `mir::PlaceRef`. At the same time, it also reduces the right drift.
Formally implement let chains
## Let chains
My longest and hardest contribution since #64010.
Thanks to `@Centril` for creating the RFC and special thanks to `@matthewjasper` for helping me since the beginning of this journey. In fact, `@matthewjasper` did much of the complicated MIR stuff so it's true to say that this feature wouldn't be possible without him. Thanks again `@matthewjasper!`
With the changes proposed in this PR, it will be possible to chain let expressions along side local variable declarations or ordinary conditional expressions. In other words, do much of what the `if_chain` crate already does.
## Other considerations
* `if let guard` and `let ... else` features need special care and should be handled in a following PR.
* Irrefutable patterns are allowed within a let chain context
* ~~Three Clippy lints were already converted to start dogfooding and help detect possible corner cases~~
cc #53667
Fixes#92987
During evaluation of an auto trait predicate, we may encounter a cycle.
This causes us to store the evaluation result in a special 'provisional
cache;. If we later end up determining that the type can legitimately
implement the auto trait despite the cycle, we remove the entry from
the provisional cache, and insert it into the evaluation cache.
Additionally, trait evaluation creates a special anonymous `DepNode`.
All queries invoked during the predicate evaluation are added as
outoging dependency edges from the `DepNode`. This `DepNode` is then
store in the evaluation cache - if a different query ends up reading
from the cache entry, it will also perform a read of the stored
`DepNode`. As a result, the cached evaluation will still end up
(transitively) incurring all of the same dependencies that it would
if it actually performed the uncached evaluation (e.g. a call to
`type_of` to determine constituent types).
Previously, we did not correctly handle the interaction between the
provisional cache and the created `DepNode`. Storing an evaluation
result in the provisional cache would cause us to lose the `DepNode`
created during the evaluation. If we later moved the entry from the
provisional cache to the evaluation cache, we would use the `DepNode`
associated with the evaluation that caused us to 'complete' the cycle,
not the evaluatoon where we first discovered the cycle. As a result,
future reads from the evaluation cache would miss some incremental
compilation dependencies that would have otherwise been added if the
evaluation was *not* cached.
Under the right circumstances, this could lead to us trying to force
a query with a no-longer-existing `DefPathHash`, since we were missing
the (red) dependency edge that would have caused us to bail out before
attempting forcing.
This commit makes the provisional cache store the `DepNode` create
during the provisional evaluation. When we move an entry from the
provisional cache to the evaluation cache, we create a *new* `DepNode`
that has dependencies going to *both* of the evaluation `DepNodes` we
have available. This ensures that cached reads will incur all of
the necessary dependency edges.
We previously weren't tracking partial re-inits while being too
aggressive around partial drops. With this change, we simply ignore
partial drops, which is the safer, more conservative choice.
This changes drop range analysis to handle uninhabited return types such
as `!`. Since these calls to these functions do not return, we model
them as ending in an infinite loop.
This reduces the amount of work done, especially in later iterations,
by only processing nodes whose predecessors changed in the previous
iteration, or earlier in the current iteration. This also has the side
effect of completely ignoring all unreachable nodes.
The refactoring mainly keeps the separation between the modules clearer.
For example, process_deferred_edges function moved to cfg_build.rs since
that is really part of building the CFG, not finding the fixpoint.
Also, we use PostOrderId instead of usize in a lot more places now.
Splits drop_ranges into drop_ranges::record_consumed_borrow,
drop_ranges::cfg_build, and drop_ranges::cfg_propagate. The top level
drop_ranges module has an entry point that does all the coordination of
the other three phases, using code original in generator_interior.
All tests pass now! The issue was that we weren't handling all edges
correctly, but now they are handled consistently.
This includes code to dump a graphviz file for the CFG we built for drop
tracking.
Also removes old DropRanges tests.
This adds support for branching and merging control flow and uses this
to correctly handle the case where a value is dropped in one branch of
an if expression but not another.
There are other cases we need to handle, which will come in follow up
patches.
Issue #57478
This is needed to handle cases like `[a, b.await, c]`. `ExprUseVisitor`
considers `a` to be consumed when it is passed to the array, but the
array is not quite live yet at that point. This means we were missing
the `a` value across the await point. Attributing drops to the parent
expression means we do not consider the value consumed until the
consuming expression has finished.
Issue #57478
The main change needed to make this work is to do a pessimistic over-
approximation for AssignOps. The existing ScopeTree analysis in
region.rs works by doing both left to right and right to left order and
then choosing the most conservative ordering. This behavior is needed
because AssignOp's evaluation order depends on whether it is a primitive
type or an overloaded operator, which runs as a method call.
This change mimics the same behavior as region.rs in
generator_interior.rs.
Issue #57478
This change adds the basic infrastructure for tracking drop ranges in
generator interior analysis, which allows us to exclude dropped types
from the generator type.
Not yet complete, but many of the async/await and generator tests pass.
The main missing piece is tracking branching control flow (e.g. around
an `if` expression). The patch does include support, however, for
multiple yields in th e same block.
Issue #57478
Delete pretty printer tracing
These are left over from 2011. I did not find these helpful at all in my work on https://github.com/dtolnay/prettyplease despite doing significant refactors to this code. Learning what these messages all refer to is harder than putting in your own messages to log exactly what is relevant to specifically the thing that you are working on debugging.
Directly use ConstValue for single literals in blocks
Addresses the minimal repro in https://github.com/rust-lang/rust/issues/92186, but doesn't fix the underlying problem (which would be solved by solving the anon subst problem afaict).
I do, however, think that it makes sense in general to treat single literals in anon blocks as const values directly, especially in light of the problem that the issue refers to (anon const evaluation being postponed until infer variables in substs can be resolved, which was introduced by https://github.com/rust-lang/rust/pull/90023), i.e. while we do get warnings for those unnecessary braces, we should try to avoid errors caused by those braces if possible.
Improve SIMD casts
* Allows `simd_cast` intrinsic to take `usize` and `isize`
* Adds `simd_as` intrinsic, which is the same as `simd_cast` except for saturating float-to-int conversions (matching the behavior of `as`).
cc `@workingjubilee`
Let qpath contain NtTy: `<$:ty as $:ty>::…`
Example:
```rust
macro_rules! m {
(<$type:ty as $trait:ty>::$name:ident) => {
<$type as $trait>::$name
};
}
fn main() {
let _: m!(<str as ToOwned>::Owned);
}
```
Previous behavior:
```console
error: expected identifier, found `ToOwned`
--> src/main.rs:3:19
|
3 | <$type as $trait>::$name
| ^^^^^^ expected identifier
...
8 | let _: m!(<str as ToOwned>::Owned);
| ---------------------------
| |
| this macro call doesn't expand to a type
| in this macro invocation
```
The <code>expected identifier, found \`ToOwned\`</code> error is particularly silly. I think it should be fine to accept this code as long as $trait is of the form `TyKind::Path(None, path)`; if it is any other kind of `NtTy`, we'll keep the same behavior as before.
Implement raw-dylib support for windows-gnu
Add support for `#[link(kind = "raw-dylib")]` on windows-gnu targets. Work around binutils's linker's inability to read import libraries produced by LLVM by calling out to the binutils `dlltool` utility to create an import library from a temporary .DEF file; this approach is effectively a slightly refined version of `@mati865's` earlier attempt at this strategy in PR #88801. (In particular, this attempt at this strategy adds support for `#[link_ordinal(...)]` as well.)
In support of #58713.
Avoid unnecessary monomorphization of inline asm related functions
This should reduce build time for codegen backends by avoiding duplicated monomorphization of certain inline asm related functions for each passed in closure type.
Abstract the pretty printer's ringbuffer to be infinitely sized
This PR backports 8e5e83c3ff from the `prettyplease` crate into `rustc_ast_pretty`.
Using a dedicated RingBuffer type with non-wrapping indices, instead of manually `%`-ing indices into a capped sized buffer, unlocks a number of simplifications to the pretty printing algorithm implementation in followup commits such as fcb5968b1e and 4427cedcb8.
This change also greatly reduces memory overhead of the pretty printer. The old implementation always grows its buffer to 205920 bytes even for files without deeply nested code, because it only wraps its indices when they hit the maximum tolerable size of the ring buffer (the size after which the pretty printer will crash if there are that many tokens buffered). In contrast, the new implementation uses memory proportional to the peak number of simultaneously buffered tokens only, not the number of tokens that have ever been in the buffer.
Speaking of crashing the pretty printer and "maximum tolerable size", the constant used for that in the old implementation is a lie:
de9b573eed/compiler/rustc_ast_pretty/src/pp.rs (L227-L228)
It was raised from 3 to 55 in https://github.com/rust-lang/rust/pull/33934 because that was empirically the size that avoided crashing on one particular test crate, but according to https://github.com/rust-lang/rust/pull/33934#issuecomment-226700470 other syntax trees still crash at that size. There is no reason to believe that any particular size is good enough for arbitrary code, and using a large number like 55 adds overhead to inputs that never need close to that much of a buffer. The new implementation eliminates this tradeoff.
Add some more attribute validation
This adds some more validation for the position of attributes:
* `link` is only valid on an `extern` block
* `windows_subsystem` and `no_builtins` are only valid at the crate level
Fix ICEs related to `Deref<Target=[T; N]>` on newtypes
1. Stash a const infer's type into the canonical var during canonicalization, so we can recreate the fresh const infer with that same type.
For example, given `[T; _]` we know `_` is a `usize`. If we go from infer => canonical => infer, we shouldn't forget that variable is a usize.
Fixes#92626Fixes#83704
2. Don't stash the autoderef'd slice type that we get from method lookup, but instead recreate it during method confirmation. We need to do this because the type we receive back after picking the method references a type variable that does not exist after probing is done.
Fixes#92637
... A better solution for the second issue would be to actually _properly_ implement `Deref` for `[T; N]` instead of fixing this autoderef hack to stop leaking inference variables. But I actually looked into this, and there are many complications with const impls.
Replace use of `ty()` on term and use it in more places. This will allow more flexibility in the
future, but slightly worried it allows items which are consts which only accept types.
Remove LLVMRustMarkAllFunctionsNounwind
This was originally introduced in #10916 as a way to remove all landing
pads when performing LTO. However this is no longer necessary today
since rustc properly marks all functions and call-sites as nounwind
where appropriate.
In fact this is incorrect in the presence of `extern "C-unwind"` which
must create a landing pad when compiled with `-C panic=abort` so that
foreign exceptions are caught and properly turned into aborts.
rustc_codegen_llvm: Remove (almost) unused span parameter from many functions in metadata.rs
Many functions and intermediate data structures in `rustc_codegen_llvm/src/debuginfo/metadata.rs` take a span parameter that is only used for providing a span to a `span_bug!()` invocation, in case the debuginfo typemap gets corrupted. However, this span does not really convey useful information as it just points to the first point a type is used -- and half of the time is initialized to `DUMMY_SP`.
This PR removes this span parameter from the module.
It also removes the following unused parameters from `composite_type_metadata()` together with an outdated comment:
```rust
// Ignore source location information as long as it
// can't be reconstructed for non-local crates.
_file_metadata: &'ll DIFile,
_definition_span: Span,
```
Implement `#[rustc_must_implement_one_of]` attribute
This PR adds a new attribute — `#[rustc_must_implement_one_of]` that allows changing the "minimal complete definition" of a trait. It's similar to GHC's minimal `{-# MINIMAL #-}` pragma, though `#[rustc_must_implement_one_of]` is weaker atm.
Such attribute was long wanted. It can be, for example, used in `Read` trait to make transitions to recently added `read_buf` easier:
```rust
#[rustc_must_implement_one_of(read, read_buf)]
pub trait Read {
fn read(&mut self, buf: &mut [u8]) -> Result<usize> {
let mut buf = ReadBuf::new(buf);
self.read_buf(&mut buf)?;
Ok(buf.filled_len())
}
fn read_buf(&mut self, buf: &mut ReadBuf<'_>) -> Result<()> {
default_read_buf(|b| self.read(b), buf)
}
}
impl Read for Ty0 {}
//^ This will fail to compile even though all `Read` methods have default implementations
// Both of these will compile just fine
impl Read for Ty1 {
fn read(&mut self, buf: &mut [u8]) -> Result<usize> { /* ... */ }
}
impl Read for Ty2 {
fn read_buf(&mut self, buf: &mut ReadBuf<'_>) -> Result<()> { /* ... */ }
}
```
For now, this is implemented as an internal attribute to start experimenting on the design of this feature. In the future we may want to extend it:
- Allow arbitrary requirements like `a | (b & c)`
- Allow multiple requirements like
- ```rust
#[rustc_must_implement_one_of(a, b)]
#[rustc_must_implement_one_of(c, d)]
```
- Make it appear in rustdoc documentation
- Change the syntax?
- Etc
Eventually, we should make an RFC and make this (or rather similar) attribute public.
---
I'm fairly new to compiler development and not at all sure if the implementation makes sense, but at least it passes tests :)
ProjectionPredicate should be able to handle both associated types and consts so this adds the
first step of that. It mainly just pipes types all the way down, not entirely sure how to handle
consts, but hopefully that'll come with time.
Replace `NestedVisitorMap` with generic `NestedFilter`
This is an attempt to make the `intravisit::Visitor` API simpler and "more const" with regard to nested visiting.
With this change, `intravisit::Visitor` does not visit nested things by default, unless you specify `type NestedFilter = nested_filter::OnlyBodies` (or `All`). `nested_visit_map` returns `Self::Map` instead of `NestedVisitorMap<Self::Map>`. It panics by default (unreachable if `type NestedFilter` is omitted).
One somewhat trixty thing here is that `nested_filter::{OnlyBodies, All}` live in `rustc_middle` so that they may have `type Map = map::Map` and so that `impl Visitor`s never need to specify `type Map` - it has a default of `Self::NestedFilter::Map`.
Remove deprecated LLVM-style inline assembly
The `llvm_asm!` was deprecated back in #87590 1.56.0, with intention to remove
it once `asm!` was stabilized, which already happened in #91728 1.59.0. Now it
is time to remove `llvm_asm!` to avoid continued maintenance cost.
Closes#70173.
Closes#92794.
Closes#87612.
Closes#82065.
cc `@rust-lang/wg-inline-asm`
r? `@Amanieu`
Rename Printer constructor from mk_printer() to Printer::new()
The original naming is left over from 2011 which was before impl blocks and associated functions existed.
21313d623a/src/comp/pretty/pp.rs
Fix suggesting turbofish with lifetime arguments
Now we suggest turbofish correctly given exprs like `foo<'_>`.
Also fix suggestion when we have `let x = foo<bar, baz>;` which was broken.
Fix `try wrapping expression in variant` suggestion with struct field shorthand
Fixes a broken suggestion: [playground](https://play.rust-lang.org/?version=nightly&mode=debug&edition=2021&gist=83fe2dbfe1485f8cfca1aef2a6582e77)
before:
```
error[E0308]: mismatched types
--> src/main.rs:7:19
|
7 | let x = Foo { bar };
| ^^^ expected enum `Option`, found integer
|
= note: expected enum `Option<i32>`
found type `{integer}`
help: try wrapping the expression in `Some`
|
7 | let x = Foo { Some(bar) };
| +++++ +
```
after:
```
error[E0308]: mismatched types
--> src/main.rs:7:19
|
7 | let x = Foo { bar };
| ^^^ expected enum `Option`, found integer
|
= note: expected enum `Option<i32>`
found type `{integer}`
help: try wrapping the expression in `Some`
|
7 | let x = Foo { bar: Some(bar) };
| ~~~~~~~~~~~~~~
```
r? ``@m-ou-se``
since you touched the code last in #91080
expand: Pick `cfg`s and `cfg_attrs` one by one, like other attributes
This is a rebase of https://github.com/rust-lang/rust/pull/83354, but without any language-changing parts ~(except for https://github.com/rust-lang/rust/pull/84110)~, i.e. the attribute expansion order is the same.
This is a pre-requisite for any other changes making cfg attributes closer to regular macro attributes
- Possibly changing their expansion order (https://github.com/rust-lang/rust/issues/83331)
- Keeping macro backtraces for cfg attributes, or otherwise making them visible after expansion without keeping them in place literally (https://github.com/rust-lang/rust/pull/84110).
Two exceptions to the "one by one" behavior are:
- cfgs eagerly expanded by `derive` and `cfg_eval`, they are still expanded in a batch, that's by design.
- cfgs at the crate root, they are currently expanded not during the main expansion pass, but before that, during `#![feature]` collection. I'll try to disentangle that logic later in a separate PR.
r? `@Aaron1011`
Parse `Ty?` as `Option<Ty>` and provide structured suggestion
Swift has specific syntax that desugars to `Option<T>` similar to our
`?` operator, which means that people might try to use it in Rust. Parse
it and gracefully recover.
Include Projections when elaborating TypeOutlives
Fixes#92280
In `Elaborator`, we elaborate that `Foo<<Bar as Baz>::Assoc>: 'a` -> `<Bar as Baz>::Assoc: 'a`. This is the same rule that would be applied to any other `Param`. If there are escaping vars, we continue to do nothing.
r? `@nikomatsakis`
Add diagnostic items for macros
For use in Clippy, it adds diagnostic items to all the stable public macros
Clippy has lints that look for almost all of these (currently by name or path), but there are a few that aren't currently part of any lint, I could remove those if it's preferred to add them as needed rather than ahead of time
Fix unclosed boxes in pretty printing of TraitAlias
This was causing trait aliases to not even render at all in stringified / pretty printed output.
```rust
macro_rules! repro {
($item:item) => {
stringify!($item)
};
}
fn main() {
println!("{:?}", repro!(pub trait Trait<T> = Sized where T: 'a;));
}
```
Before: `""`
After: `"pub trait Trait<T> = Sized where T: 'a;"`
The fix is copied from how `head`/`end` for `ItemKind::Use`, `ItemKind::ExternCrate`, and `ItemKind::Mod` are all done in the pretty printer:
dd3ac41495/compiler/rustc_ast_pretty/src/pprust/state.rs (L1178-L1184)
rustc_metadata: Switch all decoder methods from vectors to iterators
To avoid allocations in some cases.
Also remove unnecessary `is_proc_macro_crate` checks from decoder, currently the general strategy is to shift all the work to the encoder and assume that all the encoded data is correct and can be decoded unconditionally in the decoder.
Update rayon and rustc-rayon
This updates rayon for various tools and rustc-rayon for the compiler's parallel mode.
- rayon v1.3.1 -> v1.5.1
- rayon-core v1.7.1 -> v1.9.1
- rustc-rayon v0.3.1 -> v0.3.2
- rustc-rayon-core v0.3.1 -> v0.3.2
... and indirectly, this updates all of crossbeam-* to their latest versions.
Fixes#92677 by removing crossbeam-queue, but there's still a lingering question about how tidy discovers "runtime" dependencies. None of this is truly in the standard library's dependency tree at all.
Link impl items to corresponding trait items in late resolver.
Hygienically linking trait impl items to declarations in the trait can be done directly by the late resolver. In fact, it is already done to diagnose unknown items.
This PR uses this resolution work and stores the `DefId` of the trait item in the HIR. This avoids having to do this resolution manually later.
r? `@matthewjasper`
Related to #90639. The added `trait_item_id` field can be moved to `ImplItemRef` to be used directly by your PR.
Do not fail evaluation in const blocks
Evaluate const blocks with a const param-env, so we properly check `~const` trait bounds.
Fixes#92713
(I will fix the poor diagnostics in #92713 and #92712 in a separate PR)
cc `@nbdd0121` who wrote the code this PR touches in #89561
Generate more precise generator names
Currently all generators are named with a `generator$N` suffix, regardless of where they come from. This means an `async fn` shows up as a generator in stack traces, which can be surprising to async programmers since they should not need to know that async functions are implementated using generators.
This change generators a different name depending on the generator kind, allowing us to tell whether the generator is the result of an async block, an async closure, an async fn, or a plain generator.
r? `@tmandry`
cc `@michaelwoerister` `@wesleywiser` `@dpaoliello`
Optimize `impl_read_unsigned_leb128`
I see instruction count improvements of up to 3.5% locally with these changes, mostly on the smaller benchmarks.
r? `@michaelwoerister`
Add `#[track_caller]` to `mirbug`
When a "'no errors encountered even though `delay_span_bug` issued" error results from the `mirbug` function, the file location information points to the `mirbug` function itself, rather than its caller. This doesn't make sense, since the caller is the real source of the bug. Adding `#[track_caller]` will produce diagnostics that are more useful to anyone fixing the ICE.
Prefer projection candidates instead of param_env candidates for Sized predicates
Fixes#89352
Also includes some drive by logging and verbose printing changes that I found useful when debugging this, but I can remove this if needed.
This is a little hacky - but imo no more than the rest of `candidate_should_be_dropped_in_favor_of`. Importantly, in a Chalk-like world, both candidates should be completely compatible.
r? ```@nikomatsakis```
rustdoc: avoid many `Symbol` to `String` conversions.
Particularly when constructing file paths and fully qualified paths.
This avoids a lot of allocations, speeding things up on almost all
examples.
r? `@GuillaumeGomez`
Rollup of 9 pull requests
Successful merges:
- #92045 (Don't fall back to crate-level opaque type definitions.)
- #92381 (Suggest `return`ing tail expressions in async functions)
- #92768 (Partially stabilize `maybe_uninit_extra`)
- #92810 (Deduplicate box deref and regular deref suggestions)
- #92818 (Update documentation for doc_cfg feature)
- #92840 (Fix some lints documentation)
- #92849 (Clippyup)
- #92854 (Use the updated Rust logo in rustdoc)
- #92864 (Fix a missing dot in the main item heading)
Failed merges:
- #92838 (Clean up some links in RELEASES)
r? `@ghost`
`@rustbot` modify labels: rollup
Deduplicate box deref and regular deref suggestions
Remove the suggestion code special-cased for Box deref.
r? ```@camelid```
since you introduced the code in #90627
Suggest `return`ing tail expressions in async functions
This PR fixes#92308.
Previously, the suggestion to `return` tail expressions (introduced in #81769) did not apply to `async` functions, as the suggestion checked whether the types were equal disregarding `impl Future<Output = T>` syntax sugar for `async` functions. This PR changes that in order to fix a potential papercut.
I'm not sure if this is the "right" way to do this, so if there is a better way then please let me know.
I amended an existing test introduced in #81769 to add a regression test for this, if you think I should make a separate test I will.
Don't fall back to crate-level opaque type definitions.
That would just hide bugs, as it works accidentally if the opaque type is defined at the crate level.
Only works after #90948 which worked by accident for our entire test suite.
This was originally introduced in #10916 as a way to remove all landing
pads when performing LTO. However this is no longer necessary today
since rustc properly marks all functions and call-sites as nounwind
where appropriate.
In fact this is incorrect in the presence of `extern "C-unwind"` which
must create a landing pad when compiled with `-C panic=abort` so that
foreign exceptions are caught and properly turned into aborts.
Swift has specific syntax that desugars to `Option<T>` similar to our
`?` operator, which means that people might try to use it in Rust. Parse
it and gracefully recover.
Currently all generators are named with a `generator$N` suffix,
regardless of where they come from. This means an `async fn` shows up as
a generator in stack traces, which can be surprising to async
programmers since they should not need to know that async functions are
implementated using generators.
This change generators a different name depending on the generator kind,
allowing us to tell whether the generator is the result of an async
block, an async closure, an async fn, or a plain generator.
Closure capture cleanup & refactor
Follow up of #89648
Each commit is self-contained and the rationale/changes are documented in the commit message, so it's advisable to review commit by commit.
The code is significantly cleaner (at least IMO), but that could have some perf implication, so I'd suggest a perf run.
r? `@wesleywiser`
cc `@arora-aman`
rustc_metadata: Stop passing `CrateMetadataRef` by reference (step 1)
It's already a (fat) reference.
Double referencing it creates lifetime issues for its methods that want to return iterators.
---
Extracted from https://github.com/rust-lang/rust/pull/92245 for a perf run.
The PR changes a lot of symbol names due to function signature changes, so it's hard to do differential profiling, let's spend some machine time instead.
[code coverage] Fix missing dead code in modules that are never called
The issue here is that the logic used to determine which CGU to put the dead function stubs in doesn't handle cases where a module is never assigned to a CGU (which is what happens when all of the code in the module is dead).
The partitioning logic also caused issues in #85461 where inline functions were duplicated into multiple CGUs resulting in duplicate symbols.
This commit fixes the issue by removing the complex logic used to assign dead code stubs to CGUs and replaces it with a much simpler model: we pick one CGU to hold all the dead code stubs. We pick a CGU which has exported items which increases the likelihood the linker won't throw away our dead functions and we pick the smallest to minimize the impact on compilation times for crates with very large CGUs.
Fixes#91661Fixes#86177Fixes#85718Fixes#79622
r? ```@tmandry```
cc ```@richkadel```
This PR is not urgent so please don't let it interrupt your holidays! 🎄🎁
Welcome opaque types into the fold
r? ```@nikomatsakis``` because idk who else to bug on the type_op changes
The commits have explanations in them. The TLDR is that
* 5c46002273 stops the "recurse and replace" scheme that replaces opaque types with their canonical inference var by just doing that ahead of time
* bdeeb07bf6 does not affect anything on master afaict, but since opaque types generate obligations when instantiated, and lazy TAIT instantiates opaque types *everywhere*, we need to properly handle obligations here instead of just hoping no problematic obligations ever come up.
Make rlib metadata strip works with MIPSr6 architecture
Because MIPSr6 has many differences with previous MIPSr2 arch, the previous rlib metadata stripping code in `rustc_codegen_ssa` is only for MIPSr2/r3/r5 (which share the same elf e_flags).
This commit fixed this problem. It makes `rustc_codegen_ssa` happy when compiling rustc for MIPSr6 target or hosts.
e_flags REF: e356027016/llvm/include/llvm/BinaryFormat/ELF.h (L562)