Refine `instruction_set` MIR inline rules
Previously an exact match of the `instruction_set` attribute was required for an MIR inline to be considered. This change checks for an exact match *only* if the callee sets an `instruction_set` in the first place. When the callee does not declare an instruction set then it is considered to be platform agnostic code and it's allowed to be inline'd into the caller.
cc ``@oli-obk``
[Edit] Zulip Context: https://rust-lang.zulipchat.com/#narrow/stream/189540-t-compiler.2Fwg-mir-opt/topic/What.20exactly.20does.20the.20MIR.20optimizer.20do.3F
Manually implement PartialEq for Option<T> and specialize non-nullable types
This PR manually implements `PartialEq` and `StructuralPartialEq` for `Option`, which seems to produce slightly better codegen than the automatically derived implementation.
It also allows specializing on the `core::num::NonZero*` and `core::ptr::NonNull` types, taking advantage of the niche optimization by transmuting the `Option<T>` to `T` to be compared directly, which can be done in just two instructions.
A comparison of the original, new and specialized code generation is available [here](https://godbolt.org/z/dE4jxdYsa).
Add `ConstKind::Expr`
Starting to implement `ty::ConstKind::Abstract`, most of the match cases are stubbed out, some I was unsure what to add, others I didn't want to add until a more complete implementation was ready.
r? `@lcnr`
Previously an exact match of the `instruction_set` attribute was required for an MIR inline to be considered. This change checks for an exact match *only* if the callee sets an `instruction_set` in the first place. When the callee does not declare an instruction set then it is considered to be platform agnostic code and it's allowed to be inline'd into the caller.
rustc_codegen_ssa: write `.dwp` in a streaming fashion
When writing a `.dwp` file, rustc writes to a Vec first then to a BufWriter-wrapped file. It seems very likely that we can write in a streaming fashion to avoid double buffering in an intermediate Vec.
On my Linux machine, `.dwp` from the latest rust-lang/cargo is 113MiB. It may worth a stream writer, though I didn't do any benchmark 🙇🏾♂️.
Initial pass at expr/abstract const/s
Address comments
Switch to using a list instead of &[ty::Const], rm `AbstractConst`
Remove try_unify_abstract_consts
Update comments
Add edits
Recurse more
More edits
Prevent equating associated consts
Move failing test to ui
Changes this test from incremental to ui, and mark it as failing and a known bug.
Does not cause the compiler to ICE, so should be ok.
privacy: Fix more (potential) issues with effective visibilities
Continuation of https://github.com/rust-lang/rust/pull/103965.
See individual commits for more detailed description of the changes.
The shortcuts removed in 4eb63f618e and c7c7d16727 could actually be correct (or correct after some tweaks), but they used global reasoning like "we can skip this update because if the code compiles then some other update should do the same thing eventually".
I have some expertise in this area, but I still have doubt whether such global reasoning was correct or not, especially in presence of all possible exotic cases with imports.
After this PR all table changes should be "locally correct" after every update, even if it may be overcautious.
If similar optimizations are introduced again they will need detailed comments explaining why it's legal to do what they do and providing proofs.
Fixes https://github.com/rust-lang/rust/issues/104249.
Fixes https://github.com/rust-lang/rust/issues/104539.
make `error_reported` check for delayed bugs
Fixes#104768
`error_reported()` was only checking if there were errors emitted, not for `delay_bug`s which can also be a source of `ErrorGuaranteed`. I assume the same is true of `lint_err_count` but i dont know
resolve: Don't use constructor def ids in the map for field names
Also do some minor cleanup to insertion of those field names.
Addresses a FIXME left in https://github.com/rust-lang/rust/pull/103578.
Make rustc_target usable outside of rustc
I'm working on showing type size in rust-analyzer (https://github.com/rust-lang/rust-analyzer/pull/13490) and I currently copied rustc code inside rust-analyzer, which works, but is bad. With this change, I would become able to use `rustc_target` and `rustc_index` directly in r-a, reducing the amount of copy needed.
This PR contains some feature flag to put nightly features behind them to make crates buildable on the stable compiler + makes layout related types generic over index type + removes interning of nested layouts.
Avoid `GenFuture` shim when compiling async constructs
Previously, async constructs would be lowered to "normal" generators, with an additional `from_generator` / `GenFuture` shim in between to convert from `Generator` to `Future`.
The compiler will now special-case these generators internally so that async constructs will *directly* implement `Future` without the need to go through the `from_generator` / `GenFuture` shim.
The primary motivation for this change was hiding this implementation detail in stack traces and debuginfo, but it can in theory also help the optimizer as there is less abstractions to see through.
---
Given this demo code:
```rust
pub async fn a(arg: u32) -> Backtrace {
let bt = b().await;
let _arg = arg;
bt
}
pub async fn b() -> Backtrace {
Backtrace::force_capture()
}
```
I would get the following with the latest stable compiler (on Windows):
```
4: async_codegen:🅱️:async_fn$0
at .\src\lib.rs:10
5: core::future::from_generator::impl$1::poll<enum2$<async_codegen:🅱️:async_fn_env$0> >
at /rustc/897e37553bba8b42751c67658967889d11ecd120\library\core\src\future\mod.rs:91
6: async_codegen:🅰️:async_fn$0
at .\src\lib.rs:4
7: core::future::from_generator::impl$1::poll<enum2$<async_codegen:🅰️:async_fn_env$0> >
at /rustc/897e37553bba8b42751c67658967889d11ecd120\library\core\src\future\mod.rs:91
```
whereas now I get a much cleaner stack trace:
```
3: async_codegen:🅱️:async_fn$0
at .\src\lib.rs:10
4: async_codegen:🅰️:async_fn$0
at .\src\lib.rs:4
```
Previously, async constructs would be lowered to "normal" generators,
with an additional `from_generator` / `GenFuture` shim in between to
convert from `Generator` to `Future`.
The compiler will now special-case these generators internally so that
async constructs will *directly* implement `Future` without the need
to go through the `from_generator` / `GenFuture` shim.
The primary motivation for this change was hiding this implementation
detail in stack traces and debuginfo, but it can in theory also help
the optimizer as there is less abstractions to see through.
Pass `InferCtxt` to `DropRangeVisitor` so we can resolve vars
The types that we encounter in the `TypeckResults` that we pass to the `DropRangeVisitor` are not yet fully resolved, since that only happens in writeback after type checking is complete.
Instead, pass down the whole `InferCtxt` so that we can resolve any inference vars that have been constrained since they were written into the results. This is similar to how the `MemCategorizationContext` in the `ExprUseVisitor` also needs to pass down both typeck results _and_ the inference context.
Fixes an ICE mentioned in this comment: https://github.com/rust-lang/rust/issues/104382#issuecomment-1324410781
Properly handle `Pin<&mut dyn* Trait>` receiver in codegen
This ensures we can actually await a `dyn* Future`, which seems important for async fn in dyn trait.
Also, disable `dyn*` trait upcasting. It's not exactly complete right now, and can cause strange ICEs for no reason -- nobody's using it either. I thought it was cute to implement when I did it, but I didn't think about how it interacts structurally with `CoerceUnsized` correctly.
Fixes#104794, presumably removing `dyn*` upcasting and its `CoerceUnsized` issues does the trick.
Throw error on failure in loading llvm-plugin
The following code silently ignores the error as the `LLVMRustSetLastError` only tracks one error at a time. At all other places where `LLVMRustSetLastError` is used the code immediately returns.
251831ece9/compiler/rustc_llvm/llvm-wrapper/PassWrapper.cpp (L801-L804)