Fix double handling in `collect_tokens`
Double handling of AST nodes can occur in `collect_tokens`. This is when an inner call to `collect_tokens` produces an AST node, and then an outer call to `collect_tokens` produces the same AST node. This can happen in a few places, e.g. expression statements where the statement delegates `HasTokens` and `HasAttrs` to the expression. It will also happen more after #124141.
This PR fixes some double handling cases that cause problems, including #129166.
r? `@petrochenkov`
By keeping track of attributes that have been previously processed.
This fixes the `macro-rules-derive-cfg.stdout` test, and is necessary
for #124141 which removes nonterminals.
Also shrink the `SmallVec` inline size used in `IntervalSet`. 2 gives
slightly better perf than 4 now that there's an `IntervalSet` in
`Parser`, which is cloned reasonably often.
This commit does the following.
- Renames `collect_tokens_trailing_token` as `collect_tokens`, because
(a) it's annoying long, and (b) the `_trailing_token` bit is less
accurate now that its types have changed.
- In `collect_tokens`, adds a `Option<CollectPos>` argument and a
`UsePreAttrPos` in the return type of `f`. These are used in
`parse_expr_force_collect` (for vanilla expressions) and in
`parse_stmt_without_recovery` (for two different cases of expression
statements). Together these ensure are enough to fix all the problems
with token collection and assoc expressions. The changes to the
`stringify.rs` test demonstrate some of these.
- Adds a new test. The code in this test was causing an assertion
failure prior to this commit, due to an invalid `NodeRange`.
The extra complexity is annoying, but necessary to fix the existing
problems.
This pre-existing type is suitable for use with the return value of the
`f` parameter in `collect_tokens_trailing_token`. The more descriptive
name will be useful because the next commit will add another boolean
value to the return value of `f`.
Fix bug in `Parser::look_ahead`.
The special case was failing to handle invisible delimiters on one path.
Fixes (but doesn't close until beta backported) #128895.
r? `@davidtwco`
When collecting tokens there are two kinds of range:
- a range relative to the parser's full token stream (which we get when
we are parsing);
- a range relative to a single AST node's token stream (which we use
within `LazyAttrTokenStreamImpl` when replacing tokens).
These are currently both represented with `Range<u32>` and it's easy to
mix them up -- until now I hadn't properly understood the difference.
This commit introduces `ParserRange` and `NodeRange` to distinguish
them. This also requires splitting `ReplaceRange` in two, giving the new
types `ParserReplacement` and `NodeReplacement`. (These latter two names
reduce the overloading of the word "range".)
The commit also rewrites some comments to be clearer.
The end result is a little more verbose, but much clearer.
Adding details, clarifying lots of little things, etc. In particular,
the commit adds details of an example. I find this very helpful, because
it's taken me a long time to understand how this code works.
Currently in `collect_tokens_trailing_token`, `start_pos` and `end_pos`
are 1-indexed by `replace_ranges` is 0-indexed, which is really
confusing. Making them both 0-indexed makes debugging much easier.
The `Option`s within the `ReplaceRange`s within the hashmap are always
`None`. This PR omits them and inserts them when they are extracted from
the hashmap.
It's used in `Parser::collect_tokens_trailing_token` to decide whether
to capture a trailing token. But the callers actually know whether to
capture a trailing token, so it's simpler for them to just pass in a
bool.
Also, the `TrailingToken::Gt` case was weird, because it didn't result
in a trailing token being captured. It could have been subsumed by the
`TrailingToken::MaybeComma` case, and it effectively is in the new code.
Fix `DebugParser`.
I tried using this and it didn't work at all. `prev_token` is never eof, so the accumulator is always false, which means the `then_some` always returns `None`, which means `scan` always returns `None`, and `tokens` always ends up an empty vec. I'm not sure how this code was supposed to work.
(An aside: I find `Iterator::scan` to be a pretty wretched function, that produces code which is very hard to understand. Probably why this is just one of two uses of it in the entire compiler.)
This commit changes it to a simpler imperative style that produces a valid `tokens` vec.
r? `@workingjubilee`
It currently doesn't work at all. This commit changes it to a simpler
imperative style that produces a valid `tokens` vec.
(An aside: I find `Iterator::scan` to be a pretty wretched function,
that produces code which is very hard to understand. Probably why this
is just one of two uses of it in the entire compiler.)
This new special case is simpler than the old special case because it
only is used when `dist == 1`. But that's still enough to cover ~98% of
cases. This results in equivalent performance to the old special case,
and identical behaviour as the general case.
The general case at the bottom of `look_ahead` is slow, because it
clones the token cursor. Above it there is a special case for
performance that is hit most of the time and avoids the cloning.
Unfortunately, its behaviour differs from the general case in two ways.
- When within a pair of delimiters, if you look any distance past the
closing delimiter you get the closing delimiter instead of what comes
after the closing delimiter.
- It uses `tree_cursor.look_ahead(dist - 1)` which totally confuses
tokens with token trees. This means that only the first token in a
token tree will be seen. E.g. in a sequence like `{ a }` the `a` and
`}` will be skipped over. Bad!
It's likely that these differences weren't noticed before now because
the use of `look_ahead` in the parser is limited to small distances and
relatively few contexts.
Removing the special case causes slowdowns up of to 2% on a range of
benchmarks. The next commit will add a new, correct special case to
regain that lost performance.
Currently the second element is a `Vec<(FlatToken, Spacing)>`. But the
vector always has zero or one elements, and the `FlatToken` is always
`FlatToken::AttrTarget` (which contains an `AttributesData`), and the
spacing is always `Alone`. So we can simplify it to
`Option<AttributesData>`.
An assertion in `to_attr_token_stream` can can also be removed, because
`new_tokens.len()` was always 0 or 1, which means than `range.len()`
is always greater than or equal to it, because `range.is_empty()` is
always false (as per the earlier assertion).
The number of source code bytes can't exceed a `u32`'s range, so a token
position also can't. This reduces the size of `Parser` and
`LazyAttrTokenStreamImpl` by eight bytes each.
Fix duplicated attributes on nonterminal expressions
This PR fixes a long-standing bug (#86055) whereby expression attributes can be duplicated when expanded through declarative macros.
First, consider how items are parsed in declarative macros:
```
Items:
- parse_nonterminal
- parse_item(ForceCollect::Yes)
- parse_item_
- attrs = parse_outer_attributes
- parse_item_common(attrs)
- maybe_whole!
- collect_tokens_trailing_token
```
The important thing is that the parsing of outer attributes is outside token collection, so the item's tokens don't include the attributes. This is how it's supposed to be.
Now consider how expression are parsed in declarative macros:
```
Exprs:
- parse_nonterminal
- parse_expr_force_collect
- collect_tokens_no_attrs
- collect_tokens_trailing_token
- parse_expr
- parse_expr_res(None)
- parse_expr_assoc_with
- parse_expr_prefix
- parse_or_use_outer_attributes
- parse_expr_dot_or_call
```
The important thing is that the parsing of outer attributes is inside token collection, so the the expr's tokens do include the attributes, i.e. in `AttributesData::tokens`.
This PR fixes the bug by rearranging expression parsing to that outer attribute parsing happens outside of token collection. This requires a number of small refactorings because expression parsing is somewhat complicated. While doing so the PR makes the code a bit cleaner and simpler, by eliminating `parse_or_use_outer_attributes` and `Option<AttrWrapper>` arguments (in favour of the simpler `parse_outer_attributes` and `AttrWrapper` arguments), and simplifying `LhsExpr`.
r? `@petrochenkov`
The extra span is now recorded in the new `TokenKind::NtIdent` and
`TokenKind::NtLifetime`. These both consist of a single token, and so
there's no operator precedence problems with inserting them directly
into the token stream.
The other way to do this would be to wrap the ident/lifetime in invisible
delimiters, but there's a lot of code that assumes an interpolated
ident/lifetime fits in a single token, and changing all that code to work with
invisible delimiters would have been a pain. (Maybe it could be done in a
follow-up.)
This change might not seem like much of a win, but it's a first step toward the
much bigger and long-desired removal of `Nonterminal` and
`TokenKind::Interpolated`. That change is big and complex enough that it's
worth doing this piece separately. (Indeed, this commit is based on part of a
late commit in #114647, a prior attempt at that big and complex change.)