Let InstCombine remove Clone shims inside Clone shims
The Clone shims that we generate tend to recurse into other Clone shims, which gets very silly very quickly. Here's our current state: https://godbolt.org/z/E69YeY8eq
So I've added InstSimplify to the shims optimization passes, and improved `is_trivially_pure_clone_copy` so that it can delete those calls inside the shim. This makes the shim way smaller because most of its size is the required ceremony for unwinding.
This change also completely breaks the UI test added for https://github.com/rust-lang/rust/issues/104870. With this PR, that program ICEs in MIR type checking because `is_trivially_pure_clone_copy` and the trait solver disagree on whether `*mut u8` is `Copy`. And adding the requisite `Copy` impl to make them agree makes the test not generate any diagnostics. Considering that I spent most of my time on this PR fixing `#![no_core]` tests, I would prefer to just delete this one. The maintenance burden of `#![no_core]` is uniquely high because when they break they tend to break in very confusing ways.
try-job: x86_64-mingw
Switch from `derivative` to `derive-where`
This is a part of the effort to get rid of `syn 1.*` in compiler's dependencies: #109302
Derivative has not been maintained in nearly 3 years[^1]. It also depends on `syn 1.*`.
This PR replaces `derivative` with `derive-where`[^2], a not dead alternative, which uses `syn 2.*`.
A couple of `Debug` formats have changed around the skipped fields[^3], but I doubt this is an issue.
[^1]: https://github.com/mcarton/rust-derivative/issues/117
[^2]: https://lib.rs/crates/derive-where
[^3]: See the changes in `tests/ui`
Fix malformed suggestion for repeated maybe unsized bounds
Fixes#127441
Now when we encounter something like `foo(a : impl ?Sized + ?Sized)`, instead of suggesting removal of both bounds and leaving `foo(a: impl )` behind, we suggest changing the first bound to `Sized` and removing the second bound, resulting in `foo(a: impl Sized)`.
Although the issue was reported for impl trait types, it also occurred with regular param bounds. So if we encounter `foo<T: ?Sized + ?Sized>(a: T)` we now detect that all the bounds are `?Sized` and therefore emit the suggestion to remove the entire predicate `: ?Sized + ?Sized` resulting in `foo<T>(a: T)`.
Lastly, if we encounter a situation where some of the bounds are something other than `?Sized`, then we emit separate removal suggestions for each `?Sized` bound. E.g. if we see `foo(a: impl ?Sized + Bar + ?Sized)` or `foo<T: ?Sized + Bar + ?Sized>(a: T)` we emit suggestions such that the user will be left with `foo(a : impl Bar)` or `foo<T: Bar>(a: T)` respectively.
Try to fix ICE from re-interning an AllocId with different allocation contents
As far as I can tell, based on my investigation in https://github.com/rust-lang/rust/issues/126741, the racy decoding scheme implemented here was never fully correct, but the arrangement of Allocations that's required to ICE the compiler requires some very specific MIR optimizations to create. As far as I can tell, GVN likes to create the problematic pattern, which is why we're noticing this problem now.
So the solution here is to not do racy decoding. If two threads race to decoding an AllocId, one of them is going to sit on a lock until the other is done.
Remove unnecessary impl sorting in queries and metadata
Removes unnecessary impl sorting because queries already return their keys in HIR definition order: https://github.com/rust-lang/rust/issues/120371#issuecomment-1926422838
r? `@cjgillot` or `@lcnr` -- unless I totally misunderstood what was being asked for here? 😆fixes#120371
Add a hook for `should_codegen_locally`
This PR lifts the module-local function `should_codegen_locally` to `TyCtxt` as a hook.
In addition to monomorphization, this function is used for checking the dependency of `compiler_builtins` on other libraries. Moving this function to the hooks also makes overriding it possible for the tools that use the rustc interface.
Clean up a few minor refs in `format!` macro, as it has a performance cost. Apparently the compiler is unable to inline `format!("{}", &variable)`, and does a run-time double-reference instead (format macro already does one level referencing). Inlining format args prevents accidental `&` misuse.
Represent type-level consts with new-and-improved `hir::ConstArg`
### Summary
This is a step toward `min_generic_const_exprs`. We now represent all const
generic arguments using an enum that differentiates between const *paths*
(temporarily just bare const params) and arbitrary anon consts that may perform
computations. This will enable us to cleanly implement the `min_generic_const_args`
plan of allowing the use of generics in paths used as const args, while
disallowing their use in arbitrary anon consts. Here is a summary of the salient
aspects of this change:
- Add `current_def_id_parent` to `LoweringContext`
This is needed to track anon const parents properly once we implement
`ConstArgKind::Path` (which requires moving anon const def-creation
outside of `DefCollector`).
- Create `hir::ConstArgKind` enum with `Path` and `Anon` variants. Use it in the
existing `hir::ConstArg` struct, replacing the previous `hir::AnonConst` field.
- Use `ConstArg` for all instances of const args. Specifically, use it instead
of `AnonConst` for assoc item constraints, array lengths, and const param
defaults.
- Some `ast::AnonConst`s now have their `DefId`s created in
rustc_ast_lowering rather than `DefCollector`. This is because in some
cases they will end up becoming a `ConstArgKind::Path` instead, which
has no `DefId`. We have to solve this in a hacky way where we guess
whether the `AnonConst` could end up as a path const since we can't
know for sure until after name resolution (`N` could refer to a free
const or a nullary struct). If it has no chance as being a const
param, then we create a `DefId` in `DefCollector` -- otherwise we
decide during ast_lowering. This will have to be updated once all path
consts use `ConstArgKind::Path`.
- We explicitly use `ConstArgHasType` for array lengths, rather than
implicitly relying on anon const type feeding -- this is due to the
addition of `ConstArgKind::Path`.
- Some tests have their outputs changed, but the changes are for the
most part minor (including removing duplicate or almost-duplicate
errors). One test now ICEs, but it is for an incomplete, unstable
feature and is now tracked at https://github.com/rust-lang/rust/issues/127009.
### Followup items post-merge
- Use `ConstArgKind::Path` for all const paths, not just const params.
- Fix (no github dont close this issue) #127009
- If a path in generic args doesn't resolve as a type, try to resolve as a const
instead (do this in rustc_resolve). Then remove the special-casing from
`rustc_ast_lowering`, so that all params will automatically be lowered as
`ConstArgKind::Path`.
- (?) Consider making `const_evaluatable_unchecked` a hard error, or at least
trying it in crater
r? `@BoxyUwU`
Remove invalid further restricting suggestion for type bound
This PR partially addresses #127555, it will remove the obvious error suggestion:
```console
| ^^^^ required by this bound in `<Baz as Foo>::bar`
help: consider further restricting this bound
|
12 | F: FnMut() + Send + std::marker::Send,
| +++++++++++++++++++
```
I may create another PR to get a better diagnostic for `impl has stricter requirements than trait` scenario.
Don't use implicit features in `Cargo.toml` in `compiler/`
Fixes compiler crates to stop using implicit features (https://github.com/rust-lang/cargo/issues/12826) which are denied in in edition 2024.
This is a very large commit since a lot needs to be changed in order to
make the tests pass. The salient changes are:
- `ConstArgKind` gets a new `Path` variant, and all const params are now
represented using it. Non-param paths still use `ConstArgKind::Anon`
to prevent this change from getting too large, but they will soon use
the `Path` variant too.
- `ConstArg` gets a distinct `hir_id` field and its own variant in
`hir::Node`. This affected many parts of the compiler that expected
the parent of an `AnonConst` to be the containing context (e.g., an
array repeat expression). They have been changed to check the
"grandparent" where necessary.
- Some `ast::AnonConst`s now have their `DefId`s created in
rustc_ast_lowering rather than `DefCollector`. This is because in some
cases they will end up becoming a `ConstArgKind::Path` instead, which
has no `DefId`. We have to solve this in a hacky way where we guess
whether the `AnonConst` could end up as a path const since we can't
know for sure until after name resolution (`N` could refer to a free
const or a nullary struct). If it has no chance as being a const
param, then we create a `DefId` in `DefCollector` -- otherwise we
decide during ast_lowering. This will have to be updated once all path
consts use `ConstArgKind::Path`.
- We explicitly use `ConstArgHasType` for array lengths, rather than
implicitly relying on anon const type feeding -- this is due to the
addition of `ConstArgKind::Path`.
- Some tests have their outputs changed, but the changes are for the
most part minor (including removing duplicate or almost-duplicate
errors). One test now ICEs, but it is for an incomplete, unstable
feature and is now tracked at #127009.
Make ErrorGuaranteed discoverable outside types, consts, and lifetimes
types like `PatKind` could contain `ErrorGuaranteed`, but not return them via `tainted_by_errors` or `error_reported` (see https://github.com/rust-lang/rust/pull/127687#discussion_r1679027883). Now this happens, but it's a bit fragile as you can see with the `TypeSuperVisitable for Ty` impl.
We will catch any problems around Ty, Region or Const at runtime with an assert, and everything using derives will not have such issues, as it will just invoke the `TypeVisitable for ErrorGuaranteed` impl
Fix and enforce `unsafe_op_in_unsafe_fn` in compiler
In preparation for edition 2024, this PR previews the fallout of enabling the `unsafe_op_in_unsafe_fn` lint in the compiler, since it's defaulting to warn in the new edition (#112038).
The major annoyance comes primarily from the `rustc_codegen_llvm` module, where there's a ton of unsafe calls. I tended to wrap individual calls to unsafe fns in `unsafe {}`, but there a handful of places I chose to just wrap several calls in an `unsafe {}` block just because it would've been excessive to wrap each call individually.
This doesn't enable the lint for the standard library, since I'm not totally certain what T-libs prefers w/ this lint.
coverage: Restrict `ExpressionUsed` simplification to `Code` mappings
In the future, branch and MC/DC mappings might have expressions that don't correspond to any single point in the control-flow graph. That makes it trickier to keep track of which expressions should expect an `ExpressionUsed` node.
We therefore sidestep that complexity by only performing `ExpressionUsed` simplification for expressions associated directly with ordinary `Code` mappings.
(This simplification step is inherited from the original coverage implementation, which only supported `Code` mappings anyway, so there's no particular reason to extend it to other kinds of mappings unless we specifically choose to.)
Relevant to:
- #124154
- #126677
- #124278
```@rustbot``` label +A-code-coverage
Stop using the `gen` identifier in the compiler
In preparation for edition 2024, this PR previews the fallout of removing usages of `gen` since it's being reserved as a keyword.
There are two notable changes here:
1. Had to rename `fn gen(..)` in gen/kill analysis to `gen_`. Not certain there's a better name than that.
2. There are (false?[^1]) positives in `rustc_macros` when using synstructure, which uses `gen impl` to mark an implementation. We could suppress this in a one-off way, or perhaps just ignore `gen` in macros altogether, since if an identifier ends up in expanded code then it'll get properly denied anyways.
Not relevant to the compiler, but it's gonna be really annoying to change `rand`'s `gen` fn in the library and miri...
[^1]: I haven't looked at the synstructure proc macro code itself so I'm not certain if it'll start to fail when converted to ed2024 (or, e.g., when syn starts parsing `gen` as a kw).
In the future, branch and MC/DC mappings might have expressions that don't
correspond to any single point in the control-flow graph. That makes it
trickier to keep track of which expressions should expect an `ExpressionUsed`
node.
We therefore sidestep that complexity by only performing `ExpressionUsed`
simplification for expressions associated directly with ordinary `Code`
mappings.
Gate the type length limit check behind a nightly flag
Effectively disables the type length limit by introducing a `-Zenforce-type-length-limit` which defaults to **`false`**, since making the length limit actually be enforced ended up having a worse fallout than expected. We still keep the code around, but the type length limit attr is now a noop (except for its usage in some diagnostics code?).
r? `@lcnr` -- up to you to decide what team consensus we need here since this reverses an FCP decision.
Reopens#125460 (if we decide to reopen it or keep it closed)
Effectively reverses the decision FCP'd in #125507Closes#127346