Commit Graph

248 Commits

Author SHA1 Message Date
Rémy Rakic
3a8006714b simplify a self-profiling activity call in the LLVM backend
and so that it doesn't allocate unless event argument recording is turned on
2022-04-07 15:47:20 +02:00
Cliff L. Biffle
98190b7168 Revert "Work around invalid DWARF bugs for fat LTO"
Since September, the toolchain has not been generating reliable DWARF
information for static variables when LTO is on. This has affected
projects in the embedded space where the use of LTO is typical. In our
case, it has kept us from bumping past the 2021-09-22 nightly toolchain
lest our debugger break. This has been a pretty dramatic regression for
people using debuggers and static variables. See #90357 for more info
and a repro case.

This commit is a mechanical revert of
d5de680e20 from PR #89041, which caused
the issue. (Note on that PR that the commit's author has requested it be
reverted.)

I have locally verified that this fixes #90357 by restoring the
functionality of both the repro case I posted on that bug, and debugger
behavior on real programs. There do not appear to be test cases for this
in the toolchain; if I've missed them, point me at 'em and I'll update
them.
2022-04-05 10:38:13 -07:00
Joe
65ec4dd904
Improved error message for failed bitcode load
"bc" is an unnecessary shorthand that obfuscates the compilation error
2022-03-06 15:25:05 +01:00
bors
39a3b52767 Auto merge of #87402 - nagisa:nagisa/request-feature-requests-for-features, r=estebank
Direct users towards using Rust target feature names in CLI

This PR consists of a couple of changes on how we handle target features.

In particular there is a bug-fix wherein we avoid passing through features that aren't prefixed by `+` or `-` to LLVM. These appear to be causing LLVM to assert, which is pretty poor a behaviour (and also makes it pretty clear we expect feature names to be prefixed).

The other commit, I anticipate to be somewhat more controversial is outputting a warning when users specify a LLVM-specific, or otherwise unknown, feature name on the CLI. In those situations we request users to either replace it with a known Rust feature name (e.g. `bmi` -> `bmi1`) or file a feature request. I've a couple motivations for this: first of all, if users are specifying these features on the command line, I'm pretty confident there is also a need for these features to be usable via `#[cfg(target_feature)]` machinery.  And second, we're growing a fair number of backends recently and having ability to provide some sort of unified-ish interface in this place seems pretty useful to me.

Sponsored by: standard.ai
2022-03-02 03:03:22 +00:00
Simonas Kazlauskas
df701a292c Querify global_backend_features
At the very least this serves to deduplicate the diagnostics that are
output about unknown target features provided via CLI.
2022-03-01 01:57:25 +02:00
Mateusz Mikuła
c35a1d4028 Fix MinGW target detection in raw-dylib
LLVM target doesn't have to be the same as Rust target so relying on it is wrong.
2022-02-25 17:46:23 +01:00
est31
2ef8af6619 Adopt let else in more places 2022-02-19 17:27:43 +01:00
bjorn3
609784711a Unconditionally update symbols
All paths to an ArchiveBuilder::build call update_symbols first.
2022-02-10 18:27:18 +01:00
Matthias Krüger
de2abc29e9 clippy::perf fixes
single_char_pattern and to_string_in_format_args
2022-02-03 21:45:51 +01:00
Matthias Krüger
dd621a4c5c
Rollup merge of #90782 - ricobbe:binutils-dlltool, r=michaelwoerister
Implement raw-dylib support for windows-gnu

Add support for `#[link(kind = "raw-dylib")]` on windows-gnu targets.  Work around binutils's linker's inability to read import libraries produced by LLVM by calling out to the binutils `dlltool` utility to create an import library from a temporary .DEF file; this approach is effectively a slightly refined version of `@mati865's` earlier attempt at this strategy in PR #88801.  (In particular, this attempt at this strategy adds support for `#[link_ordinal(...)]` as well.)

In support of #58713.
2022-01-18 22:00:42 +01:00
Amanieu d'Antras
606d9c0c0e Remove LLVMRustMarkAllFunctionsNounwind
This was originally introduced in #10916 as a way to remove all landing
pads when performing LTO. However this is no longer necessary today
since rustc properly marks all functions and call-sites as nounwind
where appropriate.

In fact this is incorrect in the presence of `extern "C-unwind"` which
must create a landing pad when compiled with `-C panic=abort` so that
foreign exceptions are caught and properly turned into aborts.
2022-01-14 00:36:12 +00:00
Richard Cobbe
0cf7fd1208 Call out to binutils' dlltool for raw-dylib on windows-gnu platforms. 2022-01-12 10:25:35 -08:00
David Wood
08ed338f56 sess/cg: re-introduce split dwarf kind
In #79570, `-Z split-dwarf-kind={none,single,split}` was replaced by `-C
split-debuginfo={off,packed,unpacked}`. `-C split-debuginfo`'s packed
and unpacked aren't exact parallels to single and split, respectively.

On Unix, `-C split-debuginfo=packed` will put debuginfo into object
files and package debuginfo into a DWARF package file (`.dwp`) and
`-C split-debuginfo=unpacked` will put debuginfo into dwarf object files
and won't package it.

In the initial implementation of Split DWARF, split mode wrote sections
which did not require relocation into a DWARF object (`.dwo`) file which
was ignored by the linker and then packaged those DWARF objects into
DWARF packages (`.dwp`). In single mode, sections which did not require
relocation were written into object files but ignored by the linker and
were not packaged. However, both split and single modes could be
packaged or not, the primary difference in behaviour was where the
debuginfo sections that did not require link-time relocation were
written (in a DWARF object or the object file).

This commit re-introduces a `-Z split-dwarf-kind` flag, which can be
used to pick between split and single modes when `-C split-debuginfo` is
used to enable Split DWARF (either packed or unpacked).

Signed-off-by: David Wood <david.wood@huawei.com>
2022-01-06 09:32:42 +00:00
bors
1b3a5f29dd Auto merge of #91125 - eskarn:llvm-passes-plugin-support, r=nagisa
Allow loading LLVM plugins with both legacy and new pass manager

Opening a draft PR to get feedback and start discussion on this feature. There is already a codegen option `passes` which allow giving a list of LLVM pass names, however we currently can't use a LLVM pass plugin (as described here : https://llvm.org/docs/WritingAnLLVMPass.html), the only available passes are the LLVM built-in ones.

The proposed modification would be to add another codegen option `pass-plugins`, which can be set with a list of paths to shared library files. These libraries are loaded using the LLVM function `PassPlugin::Load`, which calls the expected symbol `lvmGetPassPluginInfo`, and register the pipeline parsing and optimization callbacks.

An example usage with a single plugin and 3 passes would look like this in the `.cargo/config`:

```toml
rustflags = [
    "-C", "pass-plugins=/tmp/libLLVMPassPlugin",
    "-C", "passes=pass1 pass2 pass3",
]
```
This would give the same functionality as the opt LLVM tool directly integrated in rust build system.

Additionally, we can also not specify the `passes` option, and use a plugin which inserts passes in the optimization pipeline, as one could do using clang.
2021-12-30 02:53:09 +00:00
Axel Cohen
052961b013 rustc_codegen_llvm: move should_use_new_llvm_pass_manager function to llvm_util 2021-12-20 14:49:04 +01:00
Matthias Krüger
ca3d129ee3
Rollup merge of #91931 - LegionMammal978:less-inband-codegen_llvm, r=davidtwco
Remove `in_band_lifetimes` from `rustc_codegen_llvm`

See #91867 for more information.

This one took a while. This crate has dozens of functions not associated with any type, and most of them were using in-band lifetimes for `'ll` and `'tcx`.
2021-12-18 14:49:40 +01:00
Matthias Krüger
1c42199c8f
Rollup merge of #91566 - cbeuw:remap-dwo-name, r=davidtwco
Apply path remapping to DW_AT_GNU_dwo_name when producing split DWARF

`--remap-path-prefix` doesn't apply to paths to `.o` (in case of packed) or `.dwo` (in case of unpacked) files in `DW_AT_GNU_dwo_name`. GCC also has this bug https://gcc.gnu.org/bugzilla/show_bug.cgi?id=91888
2021-12-18 14:49:38 +01:00
LegionMammal978
4937a55dfb Remove in_band_lifetimes from rustc_codegen_llvm
See #91867 for more information.
2021-12-16 14:43:32 -05:00
Andy Wang
707f72c1df
Revert "Produce .dwo file for Packed as well"
This reverts commit 32810223c6.
2021-12-13 11:40:59 +00:00
bors
a737592a3d Auto merge of #91654 - nikic:llvmbc-section-flags, r=nagisa
Use module inline assembly to embed bitcode

In LLVM 14, our current method of setting section flags to avoid
embedding the `.llvmbc` section into final compilation artifacts
will no longer work, see issue #90326. The upstream recommendation
is to instead embed the entire bitcode using module-level inline
assembly, which is what this change does.

I've kept the existing code for platforms where we do not need to
set section flags, but possibly we should always be using the
inline asm approach (which would have to look a bit different for MachO).

r? `@nagisa`
2021-12-13 10:35:28 +00:00
Axel Cohen
c4f29fa0ed Use the existing llvm-plugins option for both legacy and new pm registration 2021-12-13 10:41:43 +01:00
Axel Cohen
97cf461b8f Add a codegen option to allow loading LLVM pass plugins 2021-12-13 10:40:44 +01:00
Andy Wang
3d16a20c7a
Remap path in MCOptions 2021-12-11 01:11:57 +00:00
est31
15de4cbc4b Remove redundant [..]s 2021-12-09 00:01:29 +01:00
Nikita Popov
509dedccac Use module inline assembly to embed bitcode
In LLVM 14, our current method of setting section flags to avoid
embedding the `.llvmbc` section into final compilation artifacts
will no longer work, see issue #90326. The upstream recommendation
is to instead embed the entire bitcode using module-level inline
assembly, which is what this change does.

I've kept the existing code for platforms where we do not need to
set section flags, but possibly we should always be using the
inline asm approach.
2021-12-08 11:00:15 +01:00
Andy Wang
32810223c6
Produce .dwo file for Packed as well 2021-12-06 18:10:16 +00:00
Tomasz Miąsko
6846674c75 Emit LLVM optimization remarks when enabled with -Cremark
The default diagnostic handler considers all remarks to be disabled by
default unless configured otherwise through LLVM internal flags:
`-pass-remarks`, `-pass-remarks-missed`, and `-pass-remarks-analysis`.
This behaviour makes `-Cremark` ineffective on its own.

Fix this by configuring a custom diagnostic handler that enables
optimization remarks based on the value of `-Cremark` option. With
`-Cremark=all` enabling all remarks.
2021-11-16 08:19:20 +01:00
Tomasz Miąsko
b16ac4cbba Use brief format for optimization remarks 2021-11-16 08:19:20 +01:00
Matthias Krüger
fd5a4f42ad
Rollup merge of #90701 - michaelwoerister:more-artifact-sizes, r=davidtwco
Record more artifact sizes during self-profiling.

This PR adds artifact size recording for

- "linked artifacts" (executables, RLIBs, dylibs, static libs)
- object files
- dwo files
- assembly files
- crate metadata
- LLVM bitcode files
- LLVM IR files
- codegen unit size estimates

Currently the identifiers emitted for these are hard-coded as string literals. Is it worth adding constants to https://github.com/rust-lang/measureme/blob/master/measureme/src/rustc.rs instead? We don't do that for query names and the like -- but artifact kinds might be more stable than query names.
2021-11-09 19:00:45 +01:00
Michael Woerister
fefe1e9192 Record more artifact sizes during self-profiling. 2021-11-08 17:02:40 +01:00
Joshua Nelson
0ac13bd430 Don't abort compilation after giving a lint error
The only reason to use `abort_if_errors` is when the program is so broken that either:
1. later passes get confused and ICE
2. any diagnostics from later passes would be noise

This is never the case for lints, because the compiler has to be able to deal with `allow`-ed lints.
So it can continue to lint and compile even if there are lint errors.
2021-11-08 01:22:28 +00:00
Matthias Krüger
2f67647606
Rollup merge of #89581 - jblazquez:master, r=Mark-Simulacrum
Add -Z no-unique-section-names to reduce ELF header bloat.

This change adds a new compiler flag that can help reduce the size of ELF binaries that contain many functions.

By default, when enabling function sections (which is the default for most targets), the LLVM backend will generate different section names for each function. For example, a function `func` would generate a section called `.text.func`. Normally this is fine because the linker will merge all those sections into a single one in the binary. However, starting with [LLVM 12](https://github.com/llvm/llvm-project/commit/ee5d1a04), the backend will also generate unique section names for exception handling, resulting in thousands of `.gcc_except_table.*` sections ending up in the final binary because some linkers like LLD don't currently merge or strip these EH sections (see discussion [here](https://reviews.llvm.org/D83655)). This can bloat the ELF headers and string table significantly in binaries that contain many functions.

The new option is analogous to Clang's `-fno-unique-section-names`, and instructs LLVM to generate the same `.text` and `.gcc_except_table` section for each function, resulting in a smaller final binary.

The motivation to add this new option was because we have a binary that ended up with so many ELF sections (over 65,000) that it broke some existing ELF tools, which couldn't handle so many sections.

Here's our old binary:

```
$ readelf --sections old.elf | head -1
There are 71746 section headers, starting at offset 0x2a246508:

$ readelf --sections old.elf | grep shstrtab
  [71742] .shstrtab      STRTAB          0000000000000000 2977204c ad44bb 00      0   0  1
```

That's an 11MB+ string table. Here's the new binary using this option:

```
$ readelf --sections new.elf | head -1
There are 43 section headers, starting at offset 0x29143ca8:

$ readelf --sections new.elf | grep shstrtab
  [40] .shstrtab         STRTAB          0000000000000000 29143acc 0001db 00      0   0  1
```

The whole binary size went down by over 20MB, which is quite significant.
2021-10-25 22:59:46 +02:00
Javier Blazquez
4ed846ad4d Add -Z no-unique-section-names to reduce ELF header bloat.
This change adds a new compiler flag that can help reduce the size of
ELF binaries that contain many functions.

By default, when enabling function sections (which is the default for most
targets), the LLVM backend will generate different section names for each
function. For example, a function "func" would generate a section called
".text.func". Normally this is fine because the linker will merge all those
sections into a single one in the binary. However, starting with LLVM 12
(llvm/llvm-project@ee5d1a0), the backend will
also generate unique section names for exception handling, resulting in
thousands of ".gcc_except_table.*" sections ending up in the final binary
because some linkers don't currently merge or strip these EH sections.
This can bloat the ELF headers and string table significantly in
binaries that contain many functions.

The new option is analogous to Clang's -fno-unique-section-names, and
instructs LLVM to generate the same ".text" and ".gcc_except_table"
section for each function, resulting in smaller object files and
potentially a smaller final binary.
2021-10-11 12:09:32 -07:00
Hans Kratz
4593d78e96 Default to disabling the new pass manager for the s390x targets. 2021-10-08 15:05:07 +02:00
Jubilee
6c17601a2e
Rollup merge of #89025 - ricobbe:raw-dylib-link-ordinal, r=michaelwoerister
Implement `#[link_ordinal(n)]`

Allows the use of `#[link_ordinal(n)]` with `#[link(kind = "raw-dylib")]`, allowing Rust to link against DLLs that export symbols by ordinal rather than by name.  As long as the ordinal matches, the name of the function in Rust is not required to match the name of the corresponding function in the exporting DLL.

Part of #58713.
2021-10-07 20:26:11 -07:00
Michael Benfield
a17193dbb9 Enable AutoFDO.
This largely involves implementing the options debug-info-for-profiling
and profile-sample-use and forwarding them on to LLVM.

AutoFDO can be used on x86-64 Linux like this:
rustc -O -Cdebug-info-for-profiling main.rs -o main
perf record -b ./main
create_llvm_prof --binary=main --out=code.prof
rustc -O -Cprofile-sample-use=code.prof main.rs -o main2

Now `main2` will have feedback directed optimization applied to it.

The create_llvm_prof tool can be obtained from this github repository:
https://github.com/google/autofdo

Fixes #64892.
2021-10-06 19:36:52 +00:00
Camille GILLOT
8961616e60 Move rustc_middle::middle::cstore to rustc_session. 2021-10-03 16:08:51 +02:00
bors
b27661eb33 Auto merge of #89405 - GuillaumeGomez:fix-clippy-lints, r=cjgillot
Fix clippy lints

I'm currently working on allowing clippy to run on librustdoc after a discussion I had with `@Mark-Simulacrum.` So in the meantime, I fixed a few lints on the compiler crates.
2021-10-02 10:52:09 +00:00
Manish Goregaokar
1781e4b81a
Rollup merge of #89376 - andjo403:selfProfileUseAfterDropFix, r=Mark-Simulacrum
Fix use after drop in self-profile with llvm events

self-profile with `-Z self-profile-events=llvm` have failed with a segmentation fault due to this use after drop.
this type of events can be more useful now that the new passmanager is the default.
2021-10-01 14:46:49 -07:00
Guillaume Gomez
759eba0a08 Fix clippy lints 2021-10-01 23:17:19 +02:00
Manish Goregaokar
6f1e930581
Rollup merge of #88820 - hlopko:add_pie_relocation_model, r=petrochenkov
Add `pie` as another `relocation-model` value

MCP: https://github.com/rust-lang/compiler-team/issues/461
2021-10-01 09:18:16 -07:00
Marcel Hlopko
198d90786b Add pie as another relocation-model value 2021-10-01 08:06:42 +02:00
Andreas Jonson
d90934ce87 Fix use after drop in self-profile with llvm events 2021-09-29 22:58:33 +02:00
Nikita Popov
be01f42f73 Enable new pass manager on LLVM 13
The new pass manager is enabled by default in clang since
Clang/LLVM 13. While the discussion about this is still ongoing
(https://lists.llvm.org/pipermail/llvm-dev/2021-August/152305.html)
it's expected that support for the legacy pass manager will be
dropped either in LLVM 14 or 15.

This switches us to use the new pass manager if LLVM >= 13 is used.
2021-09-25 11:24:23 +02:00
Richard Cobbe
142f6c0b07 Implement #[link_ordinal] attribute in the context of #[link(kind = "raw-dylib")]. 2021-09-20 14:50:35 -07:00
Yilin Chen
d5de680e20 Work around invalid DWARF bugs for fat LTO
Signed-off-by: Yilin Chen <sticnarf@gmail.com>
2021-09-17 23:19:38 +08:00
bjorn3
977f279553 Move add_rlib and add_native_library to cg_ssa
This deduplicates logic between codegen backends
2021-09-01 14:43:27 +02:00
Nikita Popov
621f5146c3 Handle SrcMgr diagnostics
This is how InlineAsm diagnostics with source information are
reported now. Previously a separate InlineAsm diagnostic handler
was used.
2021-08-16 18:28:17 +02:00
Richard Cobbe
a867dd4c7e Add support for raw-dylib with stdcall, fastcall functions on i686-pc-windows-msvc. 2021-07-09 12:04:54 -07:00
Richard Cobbe
6aa45b71b1 Add first cut of functionality for #58713: support for #[link(kind = "raw-dylib")].
This does not yet support #[link_name] attributes on functions, the #[link_ordinal]
attribute, #[link(kind = "raw-dylib")] on extern blocks in bin crates, or
stdcall functions on 32-bit x86.
2021-06-04 18:01:35 -07:00
Camille GILLOT
0bde3b1f80 Use () for codegen queries. 2021-05-12 13:58:46 +02:00
Nikita Popov
c2b15a6b64 Support -C passes in NewPM
And report an error if parsing the additional pass pipeline fails.
Threading through the error accounts for most of the changes here.
2021-05-08 10:58:08 +02:00
Nikita Popov
5519cbfe33 Don't force -O1 with ThinLTO
This doesn't seem to be necessary anymore, although I don't know
at which point or why that changed.

Forcing -O1 makes some tests fail under NewPM, because NewPM also
performs inlining at -O1, so it ends up performing much more
optimization in practice than before.
2021-05-08 10:58:08 +02:00
Nikita Popov
db140de8f2 Explicitly register GCOV profiling pass as well 2021-05-08 10:58:08 +02:00
Nikita Popov
5ecbe7fcf8 Explicitly register instrprof pass
Don't use "passes" for this purpose, explicitly insert it into
the correct place in the pipeline instead.
2021-05-08 10:58:08 +02:00
Nikita Popov
0318883cd6 Make -Z new-llvm-pass-manager an Option<bool>
To allow it to have an LLVM version dependent default.
2021-05-08 10:58:08 +02:00
Luqman Aden
db555e1284 Implement RFC 2951: Native link modifiers
This commit implements both the native linking modifiers infrastructure
as well as an initial attempt at the individual modifiers from the RFC.
It also introduces a feature flag for the general syntax along with
individual feature flags for each modifier.
2021-05-05 16:04:25 -07:00
Dylan DPC
e64dbb1f46
Rollup merge of #82483 - tmiasko:option-from-str, r=matthewjasper
Use FromStr trait for number option parsing

Replace `parse_uint` with generic `parse_number` based on `FromStr`.
Use it for parsing inlining threshold to avoid casting later.
2021-04-05 13:03:37 +02:00
Dylan DPC
0d12422f2d
Rollup merge of #80525 - devsnek:wasm64, r=nagisa
wasm64 support

There is still some upstream llvm work needed before this can land.
2021-04-05 00:24:23 +02:00
Gus Caplan
da66a31572
wasm64 2021-04-04 11:29:34 -05:00
Simonas Kazlauskas
64af7eae1e Move SanitizerSet to rustc_target 2021-04-03 00:37:49 +03:00
bors
6ff482bde5 Auto merge of #83666 - Amanieu:instrprof-order, r=tmandry
Run LLVM coverage instrumentation passes before optimization passes

This matches the behavior of Clang and allows us to remove several
hacks which were needed to ensure functions weren't optimized away
before reaching the instrumentation pass.

Fixes #83429

cc `@richkadel`

r? `@tmandry`
2021-03-31 03:20:33 +00:00
Amanieu d'Antras
cad9b6b695 Apply review feedback 2021-03-30 07:03:41 +01:00
Amanieu d'Antras
26d260bfa4 Run LLVM coverage instrumentation passes before optimization passes
This matches the behavior of Clang and allows us to remove several
hacks which were needed to ensure functions weren't optimized away
before reaching the instrumentation pass.
2021-03-30 02:10:28 +01:00
Josh Stone
72ebebe474 Use iter::zip in compiler/ 2021-03-26 09:32:31 -07:00
bors
0c341226ad Auto merge of #83084 - nagisa:nagisa/features-native, r=petrochenkov
Adjust `-Ctarget-cpu=native` handling in cg_llvm

When cg_llvm encounters the `-Ctarget-cpu=native` it computes an
explciit set of features that applies to the target in order to
correctly compile code for the host CPU (because e.g. `skylake` alone is
not sufficient to tell if some of the instructions are available or
not).

However there were a couple of issues with how we did this. Firstly, the
order in which features were overriden wasn't quite right – conceptually
you'd expect `-Ctarget-cpu=native` option to override the features that
are implicitly set by the target definition. However due to how other
`-Ctarget-cpu` values are handled we must adopt the following order
of priority:

* Features from -Ctarget-cpu=*; are overriden by
* Features implied by --target; are overriden by
* Features from -Ctarget-feature; are overriden by
* function specific features.

Another problem was in that the function level `target-features`
attribute would overwrite the entire set of the globally enabled
features, rather than just the features the
`#[target_feature(enable/disable)]` specified. With something like
`-Ctarget-cpu=native` we'd end up in a situation wherein a function
without `#[target_feature(enable)]` annotation would have a broader
set of features compared to a function with one such attribute. This
turned out to be a cause of heavy run-time regressions in some code
using these function-level attributes in conjunction with
`-Ctarget-cpu=native`, for example.

With this PR rustc is more careful about specifying the entire set of
features for functions that use `#[target_feature(enable/disable)]` or
`#[instruction_set]` attributes.

Sadly testing the original reproducer for this behaviour is quite
impossible – we cannot rely on `-Ctarget-cpu=native` to be anything in
particular on developer or CI machines.

cc https://github.com/rust-lang/rust/issues/83027 `@BurntSushi`
2021-03-17 05:46:08 +00:00
Simonas Kazlauskas
72fb4379d5 Adjust -Ctarget-cpu=native handling in cg_llvm
When cg_llvm encounters the `-Ctarget-cpu=native` it computes an
explciit set of features that applies to the target in order to
correctly compile code for the host CPU (because e.g. `skylake` alone is
not sufficient to tell if some of the instructions are available or
not).

However there were a couple of issues with how we did this. Firstly, the
order in which features were overriden wasn't quite right – conceptually
you'd expect `-Ctarget-cpu=native` option to override the features that
are implicitly set by the target definition. However due to how other
`-Ctarget-cpu` values are handled we must adopt the following order
of priority:

* Features from -Ctarget-cpu=*; are overriden by
* Features implied by --target; are overriden by
* Features from -Ctarget-feature; are overriden by
* function specific features.

Another problem was in that the function level `target-features`
attribute would overwrite the entire set of the globally enabled
features, rather than just the features the
`#[target_feature(enable/disable)]` specified. With something like
`-Ctarget-cpu=native` we'd end up in a situation wherein a function
without `#[target_feature(enable)]` annotation would have a broader
set of features compared to a function with one such attribute. This
turned out to be a cause of heavy run-time regressions in some code
using these function-level attributes in conjunction with
`-Ctarget-cpu=native`, for example.

With this PR rustc is more careful about specifying the entire set of
features for functions that use `#[target_feature(enable/disable)]` or
`#[instruction_set]` attributes.

Sadly testing the original reproducer for this behaviour is quite
impossible – we cannot rely on `-Ctarget-cpu=native` to be anything in
particular on developer or CI machines.
2021-03-16 21:32:55 +02:00
Hiroki Noda
8357e57346 Add support for storing code model to LLVM module IR
This patch avoids undefined behavior by linking different object files.
Also this would it could be propagated properly to LTO.

See https://reviews.llvm.org/D52322 and https://reviews.llvm.org/D52323.

This patch is based on https://github.com/rust-lang/rust/pull/74002
2021-03-12 11:02:25 +09:00
Tomasz Miąsko
1ec905766d Use FromStr trait for number option parsing
Replace `parse_uint` with generic `parse_number` based on `FromStr`.
Use it for parsing inlining threshold to avoid casting later.
2021-03-09 14:49:04 +01:00
bors
446d4533e8 Auto merge of #82102 - nagisa:nagisa/fix-dwo-name, r=davidtwco
Set path of the compile unit to the source directory

As part of the effort to implement split dwarf debug info, we ended up
setting the compile unit location to the output directory rather than
the source directory. Furthermore, it seems like we failed to remap the
prefixes for this as well!

The desired behaviour is to instead set the `DW_AT_GNU_dwo_name` to a
path relative to compiler's working directory. This still allows
debuggers to find the split dwarf files, while not changing the
behaviour of the code that is compiling with regular debug info, and not
changing the compiler's behaviour with regards to reproducibility.

Fixes #82074

cc `@alexcrichton` `@davidtwco`
2021-02-23 10:02:16 +00:00
Simonas Kazlauskas
fa3621b468 Don't fail to remove files if they are missing
In the backend we may want to remove certain temporary files, but in
certain other situations these files might not be produced in the first
place. We don't exactly care about that, and the intent is really that
these files are gone after a certain point in the backend.

Here we unify the backend file removing calls to use `ensure_removed`
which will attempt to delete a file, but will not fail if it does not
exist (anymore).

The tradeoff to this approach is, of course, that we may miss instances
were we are attempting to remove files at wrong paths due to some bug –
compilation would silently succeed but the temporary files would remain
there somewhere.
2021-02-14 18:31:57 +02:00
Simonas Kazlauskas
16c71886c9 Set path of the compile unit to the source directory
As part of the effort to implement split dwarf debug info, we ended up
setting the compile unit location to the output directory rather than
the source directory. Furthermore, it seems like we failed to remap the
prefixes for this as well!

The desired behaviour is to instead set the `DW_AT_GNU_dwo_name` to a
path relative to compiler's working directory. This still allows
debuggers to find the split dwarf files, while not changing the
behaviour of the code that is compiling with regular debug info, and not
changing the compiler's behaviour with regards to reproducibility.

Fixes #82074
2021-02-14 17:12:14 +02:00
Tri Vo
c7d9bffe76 HWASan support 2021-02-07 23:48:58 -08:00
Alex Crichton
a124043fb0 rustc: Stabilize -Zrun-dsymutil as -Csplit-debuginfo
This commit adds a new stable codegen option to rustc,
`-Csplit-debuginfo`. The old `-Zrun-dsymutil` flag is deleted and now
subsumed by this stable flag. Additionally `-Zsplit-dwarf` is also
subsumed by this flag but still requires `-Zunstable-options` to
actually activate. The `-Csplit-debuginfo` flag takes one of
three values:

* `off` - This indicates that split-debuginfo from the final artifact is
  not desired. This is not supported on Windows and is the default on
  Unix platforms except macOS. On macOS this means that `dsymutil` is
  not executed.

* `packed` - This means that debuginfo is desired in one location
  separate from the main executable. This is the default on Windows
  (`*.pdb`) and macOS (`*.dSYM`). On other Unix platforms this subsumes
  `-Zsplit-dwarf=single` and produces a `*.dwp` file.

* `unpacked` - This means that debuginfo will be roughly equivalent to
  object files, meaning that it's throughout the build directory
  rather than in one location (often the fastest for local development).
  This is not the default on any platform and is not supported on Windows.

Each target can indicate its own default preference for how debuginfo is
handled. Almost all platforms default to `off` except for Windows and
macOS which default to `packed` for historical reasons.

Some equivalencies for previous unstable flags with the new flags are:

* `-Zrun-dsymutil=yes` -> `-Csplit-debuginfo=packed`
* `-Zrun-dsymutil=no` -> `-Csplit-debuginfo=unpacked`
* `-Zsplit-dwarf=single` -> `-Csplit-debuginfo=packed`
* `-Zsplit-dwarf=split` -> `-Csplit-debuginfo=unpacked`

Note that `-Csplit-debuginfo` still requires `-Zunstable-options` for
non-macOS platforms since split-dwarf support was *just* implemented in
rustc.

There's some more rationale listed on #79361, but the main gist of the
motivation for this commit is that `dsymutil` can take quite a long time
to execute in debug builds and provides little benefit. This means that
incremental compile times appear that much worse on macOS because the
compiler is constantly running `dsymutil` over every single binary it
produces during `cargo build` (even build scripts!). Ideally rustc would
switch to not running `dsymutil` by default, but that's a problem left
to get tackled another day.

Closes #79361
2021-01-28 08:51:11 -08:00
LingMan
a56bffb4f9 Use Option::map_or instead of .map(..).unwrap_or(..) 2021-01-14 19:23:59 +01:00
Andrew Sun
bf80159050 Make target-cpu=native detect individual features 2021-01-06 03:23:54 -05:00
Matthias Krüger
e5ead5fc58 remove unused return types such as empty Results or Options that would always be Some(..)
remove unused return type of dropck::check_drop_obligations()
don't wrap return type in Option in get_macro_by_def_id() since we would always return Some(..)
remove redundant return type of back::write::optimize()
don't Option-wrap return type of compute_type_parameters() since we always return Some(..)
don't return empty Result in assemble_generator_candidates()
don't return empty Result in assemble_closure_candidates()
don't return empty result in assemble_fn_pointer_candidates()
don't return empty result in assemble_candidates_from_impls()
don't return empty result in assemble_candidates_from_auto_impls()
don't return emtpy result in assemble_candidates_for_trait_alias()
don't return empty result in assemble_builtin_bound_candidates()
don't return empty results in assemble_extension_candidates_for_traits_in_scope() and assemble_extension_candidates_for_trait()
remove redundant wrapping of return type of StripItem::strip() since it always returns Some(..)
remove unused return type of assemble_extension_candidates_for_all_traits()
2020-12-30 13:15:40 +01:00
David Wood
ee073b5ec5
cg_llvm: split dwarf filename and comp dir
llvm-dwp concatenates `DW_AT_comp_dir` with `DW_AT_GNU_dwo_name` (only
when `DW_AT_comp_dir` exists), which can result in it failing to find
the DWARF object files.

In earlier testing, `DW_AT_comp_dir` wasn't present in the final
object and the current directory was the output directory.

When running tests through compiletest, the working directory of the
compilation is different from output directory and that resulted in
`DW_AT_comp_dir` being in the object file (and set to the current
working directory, rather than the output directory), and
`DW_AT_GNU_dwo_name` being set to the full path (rather than just
the filename), so llvm-dwp was failing.

This commit changes the compilation directory provided to LLVM to match
the output directory, where DWARF objects are output; and ensures that
only the filename is used for `DW_AT_GNU_dwo_name`.

Signed-off-by: David Wood <david@davidtw.co>
2020-12-16 10:33:52 +00:00
David Wood
e3fdae9d81
cg_llvm: implement split dwarf support
This commit implements Split DWARF support, wiring up the flag (added in
earlier commits) to the modified FFI wrapper (also from earlier
commits).

Signed-off-by: David Wood <david@davidtw.co>
2020-12-16 10:33:47 +00:00
David Wood
6890312ea3
cg_ssa: introduce TargetMachineFactoryFn alias
This commit removes the `TargetMachineFactory` struct and adds a
`TargetMachineFactoryFn` type alias which is used everywhere that the
previous, long type was used.

Signed-off-by: David Wood <david@davidtw.co>
2020-12-16 10:33:43 +00:00
David Wood
341aa97adb
llvm: update ffi bindings for split dwarf
This commit modifies the FFI bindings to LLVM required for Split DWARF
support in rustc. In particular:

- `addPassesToEmitFile`'s wrapper, `LLVMRustWriteOutputFile` now takes
  a `DwoPath` `const char*`. When disabled, `nullptr` should be provided
  which will preserve existing behaviour. When enabled, the path to the
  `.dwo` file should be provided.
- `createCompileUnit`'s wrapper, `LLVMRustDIBuilderCreateCompileUnit`
  now has two additional arguments, for the `DWOId` and to enable
  `SplitDebugInlining`. `DWOId` should always be zero.
- `createTargetMachine`'s wrapper, `LLVMRustCreateTargetMachine` has an
  additional argument which should be provided the path to the `.dwo`
  when enabled.

Signed-off-by: David Wood <david@davidtw.co>
2020-12-16 10:31:42 +00:00
Dario Nieuwenhuis
7b62e09b03 Allow disabling TrapUnreachable via -Ztrap-unreachable=no
This is useful for embedded targets where small code size is desired.
For example, on my project (thumbv7em-none-eabi) this yields a 0.6% code size reduction.
2020-11-24 01:08:27 +01:00
Dylan DPC
ae7020fcb4
Rollup merge of #78848 - DevJPM:ci-llvm-9, r=nikic
Bump minimal supported LLVM version to 9

This bumps the minimal tested llvm version to 9.
This should enable supporting newer LLVM features (and CPU extensions).

This was motived by #78361 having to drop features because of LLVM 8 not supporting certain CPU extensions yet.
This was declared relatively uncontroversial on [Zulip](https://rust-lang.zulipchat.com/#narrow/stream/182449-t-compiler.2Fhelp/topic/Min.20Supported.20LLVM.20Upgrade.20Process.3F/near/215957859).

Paging ````@eddyb```` because there was a comment in the [dockerfile](https://github.com/rust-lang/rust/blob/master/src/ci/docker/host-x86_64/x86_64-gnu-llvm-8/Dockerfile#L42) describing a hack (which I don't quite understand) which was also blocked by not having LLVM 9.
2020-11-15 03:02:39 +01:00
Vadim Petrochenkov
04d41e1f40 rustc_target: Mark UEFI targets as is_like_windows/is_like_msvc
Document what `is_like_windows` and `is_like_msvc` mean in more detail.
2020-11-12 19:40:41 +03:00
DevJPM
b51bcc72d9 fully exploited the dropped support of LLVM 8
This commit grepped for LLVM_VERSION_GE, LLVM_VERSION_LT, get_major_version and
min-llvm-version and statically evaluated every expression possible
(and sensible) assuming that the LLVM version is >=9 now
2020-11-12 14:39:47 +01:00
Vadim Petrochenkov
bf66988aa1 Collapse all uses of target.options.foo into target.foo
with an eye on merging `TargetOptions` into `Target`.

`TargetOptions` as a separate structure is mostly an implementation detail of `Target` construction, all its fields logically belong to `Target` and available from `Target` through `Deref` impls.
2020-11-08 17:29:13 +03:00
Anthony Ramine
6febaf2419 Implement -Z relax-elf-relocations=yes|no
This lets rustc users tweak whether the linker should relax ELF relocations,
namely whether it should emit R_X86_64_GOTPCRELX relocations instead of
R_X86_64_GOTPCREL, as the former is allowed by the ABI to be further
optimised. The default value is whatever the target defines.
2020-10-31 17:16:56 +01:00
Joshua Nelson
57c6ed0c07 Fix even more clippy warnings 2020-10-30 10:13:39 -04:00
Anthony Ramine
056942215c Implement -Z function-sections=yes|no
This lets rustc users tweak whether all functions should be put in their own
TEXT section, using whatever default value the target defines if the flag
is missing.
2020-10-26 23:26:43 +01:00
Tyler Mandry
6640a62e0e
Revert "Set .llvmbc and .llvmcmd sections as allocatable" 2020-10-23 12:54:00 -07:00
Dylan DPC
55f9676c47
Rollup merge of #77961 - glandium:embed-bitcode, r=nagisa
Set .llvmbc and .llvmcmd sections as allocatable

This marks both sections as allocatable rather than excluded, which matches what
clang does with the equivalent `-fembed-bitcode` flag.
2020-10-17 03:27:20 +02:00
est31
4fa5578774 Replace target.target with target and target.ptr_width with target.pointer_width
Preparation for a subsequent change that replaces
rustc_target::config::Config with its wrapped Target.

On its own, this commit breaks the build. I don't like making
build-breaking commits, but in this instance I believe that it
makes review easier, as the "real" changes of this PR can be
seen much more easily.

Result of running:

find compiler/ -type f -exec sed -i -e 's/target\.target\([)\.,; ]\)/target\1/g' {} \;
find compiler/ -type f -exec sed -i -e 's/target\.target$/target/g' {} \;
find compiler/ -type f -exec sed -i -e 's/target.ptr_width/target.pointer_width/g' {} \;
./x.py fmt
2020-10-15 12:02:24 +02:00
Mike Hommey
684d142e70 Set .llvmbc and .llvmcmd sections as allocatable 2020-10-15 14:04:57 +09:00
bors
c71248b708 Auto merge of #76859 - Aaron1011:fix/llvm-cgu-reuse, r=davidtwco,nikic
Use llvm::computeLTOCacheKey to determine post-ThinLTO CGU reuse

During incremental ThinLTO compilation, we attempt to re-use the
optimized (post-ThinLTO) bitcode file for a module if it is 'safe' to do
so.

Up until now, 'safe' has meant that the set of modules that our current
modules imports from/exports to is unchanged from the previous
compilation session. See PR #67020 and PR #71131 for more details.

However, this turns out be insufficient to guarantee that it's safe
to reuse the post-LTO module (i.e. that optimizing the pre-LTO module
would produce the same result). When LLVM optimizes a module during
ThinLTO, it may look at other information from the 'module index', such
as whether a (non-imported!) global variable is used. If this
information changes between compilation runs, we may end up re-using an
optimized module that (for example) had dead-code elimination run on a
function that is now used by another module.

Fortunately, LLVM implements its own ThinLTO module cache, which is used
when ThinLTO is performed by a linker plugin (e.g. when clang is used to
compile a C proect). Using this cache directly would require extensive
refactoring of our code - but fortunately for us, LLVM provides a
function that does exactly what we need.

The function `llvm::computeLTOCacheKey` is used to compute a SHA-1 hash
from all data that might influence the result of ThinLTO on a module.
In addition to the module imports/exports that we manually track, it
also hashes information about global variables (e.g. their liveness)
which might be used during optimization. By using this function, we
shouldn't have to worry about new LLVM passes breaking our module re-use
behavior.

In LLVM, the output of this function forms part of the filename used to
store the post-ThinLTO module. To keep our current filename structure
intact, this PR just writes out the mapping 'CGU name -> Hash' to a
file. To determine if a post-LTO module should be reused, we compare
hashes from the previous session.

This should unblock PR #75199 - by sheer chance, it seems to have hit
this issue due to the particular CGU partitioning and optimization
decisions that end up getting made.
2020-10-11 20:50:02 +00:00
Hugues de Valon
d255d70e7a Update LLVM and add Unsupported diagnostic
Secure entry functions do not support if arguments are passed on the
stack. An "unsupported" diagnostic will be emitted by LLVM if that is
the case.
This commits adds support in Rust for that diagnostic so that an error
will be output if that is the case!

Signed-off-by: Hugues de Valon <hugues.devalon@arm.com>
2020-09-30 14:57:37 +01:00
Aaron Hill
cfe07cd42a
Use llvm::computeLTOCacheKey to determine post-ThinLTO CGU reuse
During incremental ThinLTO compilation, we attempt to re-use the
optimized (post-ThinLTO) bitcode file for a module if it is 'safe' to do
so.

Up until now, 'safe' has meant that the set of modules that our current
modules imports from/exports to is unchanged from the previous
compilation session. See PR #67020 and PR #71131 for more details.

However, this turns out be insufficient to guarantee that it's safe
to reuse the post-LTO module (i.e. that optimizing the pre-LTO module
would produce the same result). When LLVM optimizes a module during
ThinLTO, it may look at other information from the 'module index', such
as whether a (non-imported!) global variable is used. If this
information changes between compilation runs, we may end up re-using an
optimized module that (for example) had dead-code elimination run on a
function that is now used by another module.

Fortunately, LLVM implements its own ThinLTO module cache, which is used
when ThinLTO is performed by a linker plugin (e.g. when clang is used to
compile a C proect). Using this cache directly would require extensive
refactoring of our code - but fortunately for us, LLVM provides a
function that does exactly what we need.

The function `llvm::computeLTOCacheKey` is used to compute a SHA-1 hash
from all data that might influence the result of ThinLTO on a module.
In addition to the module imports/exports that we manually track, it
also hashes information about global variables (e.g. their liveness)
which might be used during optimization. By using this function, we
shouldn't have to worry about new LLVM passes breaking our module re-use
behavior.

In LLVM, the output of this function forms part of the filename used to
store the post-ThinLTO module. To keep our current filename structure
intact, this PR just writes out the mapping 'CGU name -> Hash' to a
file. To determine if a post-LTO module should be reused, we compare
hashes from the previous session.

This should unblock PR #75199 - by sheer chance, it seems to have hit
this issue due to the particular CGU partitioning and optimization
decisions that end up getting made.
2020-09-17 22:04:13 -04:00
Victor Ding
c81b43d8ac Add -Z combine_cgu flag
Introduce a compiler option to let rustc combines all regular CGUs into
a single one at the end of compilation.

Part of Issue #64191
2020-09-09 17:32:23 +10:00
mark
9e5f7d5631 mv compiler to compiler/ 2020-08-30 18:45:07 +03:00