Currently, `emit_diagnostic` takes `&mut self`.
This commit changes it so `emit_diagnostic` takes `self` and the new
`emit_diagnostic_without_consuming` function takes `&mut self`.
I find the distinction useful. The former case is much more common, and
avoids a bunch of `mut` and `&mut` occurrences. We can also restrict the
latter with `pub(crate)` which is nice.
codegen: panic when trying to compute size/align of extern type
The alignment is also computed when accessing a field of extern type at non-zero offset, so we also panic in that case.
Previously `size_of_val` worked because the code path there assumed that "thin pointer" means "sized". But that's not true any more with extern types. The returned size and align are just blatantly wrong, so it seems better to panic than returning wrong results. We use a non-unwinding panic since code probably does not expect size_of_val to panic.
Renamings:
- find -> opt_hir_node
- get -> hir_node
- find_by_def_id -> opt_hir_node_by_def_id
- get_by_def_id -> hir_node_by_def_id
Fix rebase changes using removed methods
Use `tcx.hir_node_by_def_id()` whenever possible in compiler
Fix clippy errors
Fix compiler
Apply suggestions from code review
Co-authored-by: Vadim Petrochenkov <vadim.petrochenkov@gmail.com>
Add FIXME for `tcx.hir()` returned type about its removal
Simplify with with `tcx.hir_node_by_def_id`
guarantee that char and u32 are ABI-compatible
In https://github.com/rust-lang/rust/pull/116894 we added a guarantee that `char` has the same alignment as `u32`, but there is still one axis where these types could differ: function call ABI. So let's nail that down as well: in a function signature, `char` and `u32` are completely equivalent.
This is a new stable guarantee, so it will need t-lang approval.
remove redundant imports
detects redundant imports that can be eliminated.
for #117772 :
In order to facilitate review and modification, split the checking code and removing redundant imports code into two PR.
r? `@petrochenkov`
detects redundant imports that can be eliminated.
for #117772 :
In order to facilitate review and modification, split the checking code and
removing redundant imports code into two PR.
compile-time evaluation: detect writes through immutable pointers
This has two motivations:
- it unblocks https://github.com/rust-lang/rust/pull/116745 (and therefore takes a big step towards `const_mut_refs` stabilization), because we can now detect if the memory that we find in `const` can be interned as "immutable"
- it would detect the UB that was uncovered in https://github.com/rust-lang/rust/pull/117905, which was caused by accidental stabilization of `copy` functions in `const` that can only be called with UB
When UB is detected, we emit a future-compat warn-by-default lint. This is not a breaking change, so completely in line with [the const-UB RFC](https://rust-lang.github.io/rfcs/3016-const-ub.html), meaning we don't need t-lang FCP here. I made the lint immediately show up for dependencies since it is nearly impossible to even trigger this lint without `const_mut_refs` -- the accidentally stabilized `copy` functions are the only way this can happen, so the crates that popped up in #117905 are the only causes of such UB (in the code that crater covers), and the three cases of UB that we know about have all been fixed in their respective crates already.
The way this is implemented is by making use of the fact that our interpreter is already generic over the notion of provenance. For CTFE we now use the new `CtfeProvenance` type which is conceptually an `AllocId` plus a boolean `immutable` flag (but packed for a more efficient representation). This means we can mark a pointer as immutable when it is created as a shared reference. The flag will be propagated to all pointers derived from this one. We can then check the immutable flag on each write to reject writes through immutable pointers.
I just hope perf works out.
rustc: Harmonize `DefKind` and `DefPathData`
Follow up to https://github.com/rust-lang/rust/pull/118188.
`DefPathData::(ClosureExpr,ImplTrait)` are renamed to match `DefKind::(Closure,OpaqueTy)`.
`DefPathData::ImplTraitAssocTy` is replaced with `DefPathData::TypeNS(kw::Empty)` because both correspond to `DefKind::AssocTy`.
It's possible that introducing `(DefKind,DefPathData)::AssocOpaqueTy` instead could be a better solution, but that would be a much more invasive change.
Const generic parameters introduced for effects are moved from `DefPathData::TypeNS` to `DefPathData::ValueNS`, because constants are values.
`DefPathData` is no longer passed to `create_def` functions to avoid redundancy.
`DefPathData::(ClosureExpr,ImplTrait)` are renamed to match `DefKind::(Closure,OpaqueTy)`.
`DefPathData::ImplTraitAssocTy` is replaced with `DefPathData::TypeNS(kw::Empty)` because both correspond to `DefKind::AssocTy`.
It's possible that introducing `(DefKind,DefPathData)::AssocOpaqueTy` could be a better solution, but that would be a much more invasive change.
Const generic parameters introduced for effects are moved from `DefPathData::TypeNS` to `DefPathData::ValueNS`, because constants are values.
`DefPathData` is no longer passed to `create_def` functions to avoid redundancy.
explain a good reason for why LocalValue does not store the type of the local
As found out by `@lcnr` in https://github.com/rust-lang/rust/pull/112307, storing the type here can lead to subtle bugs when it gets out of sync with the MIR body. That's not the reason why the interpreter does it this way I think, but good thing we dodged that bullet. :)
Currently we always do this:
```
use rustc_fluent_macro::fluent_messages;
...
fluent_messages! { "./example.ftl" }
```
But there is no need, we can just do this everywhere:
```
rustc_fluent_macro::fluent_messages! { "./example.ftl" }
```
which is shorter.
The `fluent_messages!` macro produces uses of
`crate::{D,Subd}iagnosticMessage`, which means that every crate using
the macro must have this import:
```
use rustc_errors::{DiagnosticMessage, SubdiagnosticMessage};
```
This commit changes the macro to instead use
`rustc_errors::{D,Subd}iagnosticMessage`, which avoids the need for the
imports.
Miri: GC the dead_alloc_map too
dead_alloc_map is the last piece of state in the interpreter I can find that leaks. With this PR, all of the long-term memory growth I can find in Miri with programs that do things like run a big `loop {` or run property tests is attributable to some data structure properties in borrow tracking, and is _extremely_ slow.
My only gripe with the commit in this PR is that I don't have a new test for it. I'd like to have a regression test for this, but it would have to be statistical I think because the peak memory of a process that Linux reports is not exactly the same run-to-run. Which means it would have to not be very sensitive to slow leaks (some guesswork suggests for acceptable CI time we would be checking for like 10% memory growth over a minute or two, which is still pretty fast IMO).
Unless someone has a better idea for how to detect a regression, I think on balance I'm fine with manually keeping an eye on the memory use situation.
r? RalfJung
Expand Miri's BorTag GC to a Provenance GC
As suggested in https://github.com/rust-lang/miri/issues/3080#issuecomment-1732505573
We previously solved memory growth issues associated with the Stacked Borrows and Tree Borrows runtimes with a GC. But of course we also have state accumulation associated with whole allocations elsewhere in the interpreter, and this PR starts tackling those.
To do this, we expand the visitor for the GC so that it can visit a BorTag or an AllocId. Instead of collecting all live AllocIds into a single HashSet, we just collect from the Machine itself then go through an accessor `InterpCx::is_alloc_live` which checks a number of allocation data structures in the core interpreter. This avoids the overhead of all the inserts that collecting their keys would require.
r? ``@RalfJung``
interpret: simplify handling of shifts by no longer trying to handle signed and unsigned shift amounts in the same branch
While we're at it, also update comments in codegen and MIR building related to shifts, and fix the overflow error printed by Miri on negative shift amounts.
generator layout: ignore fake borrows
fixes#117059
We emit fake shallow borrows in case the scrutinee place uses a `Deref` and there is a match guard. This is necessary to prevent the match guard from mutating the scrutinee: fab1054e17/compiler/rustc_mir_build/src/build/matches/mod.rs (L1250-L1265)
These fake borrows end up impacting the generator witness computation in `mir_generator_witnesses`, which causes the issue in #117059. This PR now completely ignores fake borrows during this computation. This is sound as thse are always removed after analysis and the actual computation of the generator layout happens afterwards.
Only the second commit impacts behavior, and could be backported by itself.
r? types
patterns: reject raw pointers that are not just integers
Matching against `0 as *const i32` is fine, matching against `&42 as *const i32` is not.
This extends the existing check against function pointers and wide pointers: we now uniformly reject all these pointer types during valtree construction, and then later lint because of that. See [here](https://github.com/rust-lang/rust/pull/116930#issuecomment-1784654073) for some more explanation and context.
Also fixes https://github.com/rust-lang/rust/issues/116929.
Cc `@oli-obk` `@lcnr`
Most notably, this commit changes the `pub use crate::*;` in that file
to `use crate::*;`. This requires a lot of `use` items in other crates
to be adjusted, because everything defined within `rustc_span::*` was
also available via `rustc_span::source_map::*`, which is bizarre.
The commit also removes `SourceMap::span_to_relative_line_string`, which
is unused.
Do not assert in op_to_const.
`op_to_const` is used in `try_destructure_mir_constant_for_diagnostics`, which may encounter invalid constants created by optimizations and debugging.
r? ``@oli-obk``
Fixes https://github.com/rust-lang/rust/issues/117368
Avoid the path trimming ICE lint in error reporting
Types or really anything in MIR should never be formatted without path trimming disabled, because its formatting often tries to construct trimmed paths. In this case, the lint turns a nice error report into an irrelevant ICE.
Support enum variants in offset_of!
This MR implements support for navigating through enum variants in `offset_of!`, placing the enum variant name in the second argument to `offset_of!`. The RFC placed it in the first argument, but I think it interacts better with nested field access in the second, as you can then write things like
```rust
offset_of!(Type, field.Variant.field)
```
Alternatively, a syntactic distinction could be made between variants and fields (e.g. `field::Variant.field`) but I'm not convinced this would be helpful.
[RFC 3308 # Enum Support](https://rust-lang.github.io/rfcs/3308-offset_of.html#enum-support-offset_ofsomeenumstructvariant-field_on_variant)
Tracking Issue #106655.
share some track_caller logic between interpret and codegen
Also move the code that implements the track_caller intrinsics out of the core interpreter engine -- it's just a helper creating a const-allocation, doesn't need to be part of the interpreter core.
- Sort dependencies and features sections.
- Add `tidy` markers to the sorted sections so they stay sorted.
- Remove empty `[lib`] sections.
- Remove "See more keys..." comments.
Excluded files:
- rustc_codegen_{cranelift,gcc}, because they're external.
- rustc_lexer, because it has external use.
- stable_mir, because it has external use.
See through aggregates in GVN
This PR is extracted from https://github.com/rust-lang/rust/pull/111344
The first 2 commit are cleanups to avoid repeated work. I propose to stop removing useless assignments as part of this pass, and let a later `SimplifyLocals` do it. This makes tests easier to read (among others).
The next 3 commits add a constant folding mechanism to the GVN pass, presented in https://github.com/rust-lang/rust/pull/116012. ~This pass is designed to only use global allocations, to avoid any risk of accidental modification of the stored state.~
The following commits implement opportunistic simplifications, in particular:
- projections of aggregates: `MyStruct { x: a }.x` gets replaced by `a`, works with enums too;
- projections of arrays: `[a, b][0]` becomes `a`;
- projections of repeat expressions: `[a; N][x]` becomes `a`;
- transform arrays of equal operands into a repeat rvalue.
Fixes https://github.com/rust-lang/miri/issues/3090
r? `@oli-obk`
Make `ty::print::Printer` take `&mut self` instead of `self`
based on #116815
This simplifies the code by removing all the `self` assignments and
makes the flow of data clearer - always into the printer.
Especially in v0 mangling, which already used `&mut self` in some
places, it gets a lot more uniform.
This simplifies the code by removing all the `self` assignments and
makes the flow of data clearer - always into the printer.
Especially in v0 mangling, which already used `&mut self` in some
places, it gets a lot more uniform.
Implement rustc part of RFC 3127 trim-paths
This PR implements (or at least tries to) [RFC 3127 trim-paths](https://github.com/rust-lang/rust/issues/111540), the rustc part. That is `-Zremap-path-scope` with all of it's components/scopes.
`@rustbot` label: +F-trim-paths
Remove lots of generics from `ty::print`
All of these generics mostly resolve to the same thing, which means we can remove them, greatly simplifying the types involved in pretty printing and unlocking another simplification (that is not performed in this PR): Using `&mut self` instead of passing `self` through the return type.
cc `@eddyb` you probably know why it's like this, just checking in and making sure I didn't do anything bad
r? oli-obk
These are `Self` in almost all printers except one, which can just store
the state as a field instead. This simplifies the printer and allows for
further simplifications, for example using `&mut self` instead of
passing around the printer.
don't UB on dangling ptr deref, instead check inbounds on projections
This implements https://github.com/rust-lang/reference/pull/1387 in Miri. See that PR for what the change is about.
Detecting dangling references in `let x = &...;` is now done by validity checking only, so some tests need to have validity checking enabled. There is no longer inherently a "nodangle" check in evaluating the expression `&*ptr` (aside from the aliasing model).
r? `@oli-obk`
Based on:
- https://github.com/rust-lang/reference/pull/1387
- https://github.com/rust-lang/rust/pull/115524
interpret: clean up AllocBytes
Fixes https://github.com/rust-lang/miri/issues/2836
Nothing has moved here in half a year, so let's just remove these unused stubs -- they need a proper re-design anyway.
r? `@oli-obk`
It's a better name, and lets "active features" refer to the features
that are active in a particular program, due to being declared or
enabled by the edition.
The commit also renames `Features::enabled` as `Features::active` to
match this; I changed my mind and have decided that "active" is a little
better thatn "enabled" for this, particularly because a number of
pre-existing comments use "active" in this way.
Finally, the commit renames `Status::Stable` as `Status::Accepted`, to
match `ACCEPTED_FEATURES`.
Format all the let-chains in compiler crates
Since rust-lang/rustfmt#5910 has landed, soon we will have support for formatting let-chains (as soon as rustfmt syncs and beta gets bumped).
This PR applies the changes [from master rustfmt to rust-lang/rust eagerly](https://rust-lang.zulipchat.com/#narrow/stream/122651-general/topic/out.20formatting.20of.20prs/near/374997516), so that the next beta bump does not have to deal with a 200+ file diff and can remain concerned with other things like `cfg(bootstrap)` -- #113637 was a pain to land, for example, because of let-else.
I will also add this commit to the ignore list after it has landed.
The commands that were run -- I'm not great at bash-foo, but this applies rustfmt to every compiler crate, and then reverts the two crates that should probably be formatted out-of-tree.
```
~/rustfmt $ ls -1d ~/rust/compiler/* | xargs -I@ cargo run --bin rustfmt -- `@/src/lib.rs` --config-path ~/rust --edition=2021 # format all of the compiler crates
~/rust $ git checkout HEAD -- compiler/rustc_codegen_{gcc,cranelift} # revert changes to cg-gcc and cg-clif
```
cc `@rust-lang/rustfmt`
r? `@WaffleLapkin` or `@Nilstrieb` who said they may be able to review this purely mechanical PR :>
cc `@Mark-Simulacrum` and `@petrochenkov,` who had some thoughts on the order of operations with big formatting changes in https://github.com/rust-lang/rust/pull/95262#issue-1178993801. I think the situation has changed since then, given that let-chains support exists on master rustfmt now, and I'm fairly confident that this formatting PR should land even if *bootstrap* rustfmt doesn't yet format let-chains in order to lessen the burden of the next beta bump.
const_eval: allow function pointer signatures containing &mut T in const contexts
potentially fixes#114994
We utilize a `TypeVisitor` here in order to more easily handle control flow.
- In the event the typekind the Visitor sees is a function pointer, we skip over it
- However, otherwise we do one of two things:
- If we find a mutable reference, check it, then continue visiting types
- If we find any other type, continue visiting types
This means we will check if the function pointer _itself_ is mutable, but not if any of the types _within_ are.
const-eval: make misalignment a hard error
It's been a future-incompat error (showing up in cargo's reports) since https://github.com/rust-lang/rust/pull/104616, Rust 1.68, released in March. That should be long enough.
The question for the lang team is simply -- should we move ahead with this, making const-eval alignment failures a hard error? (It turns out some of them accidentally already were hard errors since #104616. But not all so this is still a breaking change. Crater found no regression.)
miri: make NaN generation non-deterministic
This implements the [LLVM semantics for NaN generation](https://llvm.org/docs/LangRef.html#behavior-of-floating-point-nan-values). I will soon submit an RFC to make this also officially the Rust semantics, but it has been our de-facto semantics for a long time so there's no reason Miri has to wait for that RFC. This PR just better aligns Miri with codegen.
This PR does that just for the operations that have MIR primitives; a future PR will adjust the intrinsics.
Show more information when multiple `impl`s apply
- When there are `impl`s without type params, show only those (to avoid showing overly generic `impl`s).
```
error[E0283]: type annotations needed
--> $DIR/multiple-impl-apply.rs:34:9
|
LL | let y = x.into();
| ^ ---- type must be known at this point
|
note: multiple `impl`s satisfying `_: From<Baz>` found
--> $DIR/multiple-impl-apply.rs:14:1
|
LL | impl From<Baz> for Bar {
| ^^^^^^^^^^^^^^^^^^^^^^
...
LL | impl From<Baz> for Foo {
| ^^^^^^^^^^^^^^^^^^^^^^
= note: required for `Baz` to implement `Into<_>`
help: consider giving `y` an explicit type
|
LL | let y: /* Type */ = x.into();
| ++++++++++++
```
- Lower the importance of `T: Sized`, `T: WellFormed` and coercion errors, to prioritize more relevant errors. The pre-existing deduplication logic deals with hiding redundant errors better that way, and we show errors with more metadata that is useful to the user.
- Show `<SelfTy as Trait>::assoc_fn` suggestion in more cases.
```
error[E0790]: cannot call associated function on trait without specifying the corresponding `impl` type
--> $DIR/cross-return-site-inference.rs:38:16
|
LL | return Err(From::from("foo"));
| ^^^^^^^^^^ cannot call associated function of trait
|
help: use a fully-qualified path to a specific available implementation
|
LL | return Err(</* self type */ as From>::from("foo"));
| +++++++++++++++++++ +
```
Fix#88284.
In `report_fullfillment_errors` push back `T: Sized`, `T: WellFormed`
and coercion errors to the end of the list. The pre-existing
deduplication logic eliminates redundant errors better that way, keeping
the resulting output with fewer errors than before, while also having
more detail.
Rollup of 5 pull requests
Successful merges:
- #115863 (Add check_unused_messages in tidy)
- #116210 (Ensure that `~const` trait bounds on associated functions are in const traits or impls)
- #116358 (Rename both of the `Match` relations)
- #116371 (Remove unused features from `rustc_llvm`.)
- #116374 (Print normalized ty)
r? `@ghost`
`@rustbot` modify labels: rollup
Partially outline code inside the panic! macro
This outlines code inside the panic! macro in some cases. This is split out from https://github.com/rust-lang/rust/pull/115562 to exclude changes to rustc.
interpret: more consistently use ImmTy in operators and casts
The diff in src/tools/miri/src/shims/x86/sse2.rs should hopefully suffice to explain why this is nicer. :)
rename mir::Constant -> mir::ConstOperand, mir::ConstKind -> mir::Const
Also, be more consistent with the `to/eval_bits` methods... we had some that take a type and some that take a size, and then sometimes the one that takes a type is called `bits_for_ty`.
Turns out that `ty::Const`/`mir::ConstKind` carry their type with them, so we don't need to even pass the type to those `eval_bits` functions at all.
However this is not properly consistent yet: in `ty` we have most of the methods on `ty::Const`, but in `mir` we have them on `mir::ConstKind`. And indeed those two types are the ones that correspond to each other. So `mir::ConstantKind` should actually be renamed to `mir::Const`. But what to do with `mir::Constant`? It carries around a span, that's really more like a constant operand that appears as a MIR operand... it's more suited for `syntax.rs` than `consts.rs`, but the bigger question is, which name should it get if we want to align the `mir` and `ty` types? `ConstOperand`? `ConstOp`? `Literal`? It's not a literal but it has a field called `literal` so it would at least be consistently wrong-ish...
``@oli-obk`` any ideas?
move required_consts check to general post-mono-check function
This factors some code that is common between the interpreter and the codegen backends into shared helper functions. Also as a side-effect the interpreter now uses the same `eval` functions as everyone else to get the evaluated MIR constants.
Also this is in preparation for another post-mono check that will be needed for (the current hackfix for) https://github.com/rust-lang/rust/issues/115709: ensuring that all locals are dynamically sized.
I didn't expect this to change diagnostics, but it's just cycle errors that change.
r? `@oli-obk`
Rollup of 6 pull requests
Successful merges:
- #115736 (Remove `verbose_generic_activity_with_arg`)
- #115771 (cleanup leftovers of const_err lint)
- #115798 (add helper method for finding the one non-1-ZST field)
- #115812 (Merge settings.css into rustdoc.css)
- #115815 (fix: return early when has tainted in mir pass)
- #115816 (Disabled socketpair for Vita)
r? `@ghost`
`@rustbot` modify labels: rollup
cleanup leftovers of const_err lint
Some code / comments seem to not have been updated when const_err was turned into a hard error, so we can do a bit of cleanup here.
r? `@oli-obk`
Read from non-scalar constants and statics in dataflow const-prop
DataflowConstProp is designed to handle scalar values. When MIR features an assignment from a non-scalar constant, we need to manually decompose it into the custom state space.
This PR tweaks interpreter callbacks to allow reusing `eval_mir_constant` without having a stack frame to get a span from.
r? `@oli-obk`
cc `@jachris`
miri: catch function calls where the argument is caller-invalid / the return value callee-invalid
When doing a type-changing copy, we must validate the data both at the old and new type.
Fixes https://github.com/rust-lang/miri/issues/3017
miri ABI compatibility check: accept u32 and i32
If only the sign differs, then surely these types are compatible. (We do still check that `arg_ext` is the same, just in case.)
Also I made it so that the ABI check must *imply* that size and alignment are the same, but it doesn't actively check that itself. With how crazy ABI constraints get, having equal size and align really shouldn't be used as a signal for anything I think...
Add MIR validation for unwind out from nounwind functions + fixes to make validation pass
`@Nilstrieb` This is the MIR validation you asked in https://github.com/rust-lang/rust/pull/112403#discussion_r1222739722.
Two passes need to be fixed to get the validation to pass:
* `RemoveNoopLandingPads` currently unconditionally introduce a resume block (even there is none to begin with!), changed to not do that
* Generator state transform introduces a `assert` which may unwind, and its drop elaboration also introduces many new `UnwindAction`s, so in this case run the AbortUnwindingCalls after the transformation.
I believe this PR should also fixRust-for-Linux/linux#1016, cc `@ojeda`
r? `@Nilstrieb`
Add a new `compare_bytes` intrinsic instead of calling `memcmp` directly
As discussed in #113435, this lets the backends be the place that can have the "don't call the function if n == 0" logic, if it's needed for the target. (I didn't actually *add* those checks, though, since as I understood it we didn't actually need them on known targets?)
Doing this also let me make it `const` (unstable), which I don't think `extern "C" fn memcmp` can be.
cc `@RalfJung` `@Amanieu`
Add documentation to has_deref
Documentation of `has_deref` needed some polish to be more clear about where it should be used and what's it's purpose.
cc https://github.com/rust-lang/rust/issues/114401
r? `@RalfJung`
const validation: point at where we found a pointer but expected an integer
Instead of validation just printing "unable to turn pointer into bytes", make this a regular validation error that says where in the value the bad pointer was found. Also distinguish "expected integer, got pointer" from "expected pointer, got partial pointer or mix of pointers".
To avoid duplicating things too much I refactored the diagnostics for validity a bit, so that "got uninit, expected X" and "got pointer, expected X" can share the "X" part. Also all the errors emitted for validation are now grouped under `const_eval_validation` so that they are in a single group in the ftl file.
r? `@oli-obk`
Miri: fix error on dangling pointer inbounds offset
We used to claim that the pointer was "dereferenced", but that is just not true.
Can be reviewed commit-by-commit. The first commit is an unrelated rename that didn't seem worth splitting into its own PR.
r? `@oli-obk`
Turns out opaque types can have hidden types registered during mir validation
See the newly added test's documentation for an explanation.
fixes#114121
Replace in-tree `rustc_apfloat` with the new version of the crate
Replace the in-tree version of `rustc_apfloat` with the new version of the crate which has been correctly licensed. The new crate incorporates upstream changes from LLVM since the original port was done including many correctness fixes and has been extensively fuzz tested to validate correctness.
Fixes#100233Fixes#102403Fixes#113407Fixes#113409Fixes#55993Fixes#93224Closes#93225Closes#109573
interpret: make read/write methods generic
Instead of always having to call `into()` to convert things to `PlaceTy`/`OpTy`, make the relevant methods generic. This also means that when we read from an `MPlaceTy`, we avoid creating an intermediate `PlaceTy`.
This makes it feasible to remove the `Copy` from `MPlaceTy`. All the other `*Ty` interpreter types already had their `Copy` removed a while ago so this is only consistent. (And in fact we had one function that accidentally took `MPlaceTy` instead of `&MPlaceTy`.)
Double check that hidden types match the expected hidden type
Fixes https://github.com/rust-lang/rust/issues/113278 specifically, but I left a TODO for where we should also add some hardening.
It feels a bit like papering over the issue, but at least this way we don't get unsoundness, but just surprising errors. Errors will be improved and given spans before this PR lands.
r? `@compiler-errors` `@lcnr`
Normalize the RHS of an `Unsize` goal in the new solver
`Unsize` goals are... tricky. Not only do they structurally match on their self type, but they're also structural on their other type parameter. I'm pretty certain that it is both incomplete and also just plain undesirable to not consider normalizing the RHS of an unsize goal. More practically, I'd like for this code to work:
```rust
trait A {}
trait B: A {}
impl A for usize {}
impl B for usize {}
trait Mirror {
type Assoc: ?Sized;
}
impl<T: ?Sized> Mirror for T {
type Assoc = T;
}
fn main() {
// usize: Unsize<dyn B>
let x = Box::new(1usize) as Box<<dyn B as Mirror>::Assoc>;
// dyn A: Unsize<dyn B>
let y = x as Box<<dyn A as Mirror>::Assoc>;
}
```
---
In order to achieve this, we add `EvalCtxt::normalize_non_self_ty` (naming modulo bikeshedding), which *must* be used for all non-self type arguments that are structurally matched in candidate assembly. Currently this is only necessary for `Unsize`'s argument, but I could see future traits requiring this (hopefully rarely) in the future. It uses `repeat_while_none` to limit infinite looping, and normalizes the self type until it is no longer an alias.
Also, we need to fix feature gate detection for `trait_upcasting` and `unsized_tuple_coercion` when HIR typeck has unnormalized types. We can do that by checking the `ImplSource` returned by selection, which necessitates adding a new impl source for tuple upcasting.
interpret: Unify projections for MPlaceTy, PlaceTy, OpTy
For ~forever, we didn't really have proper shared code for handling projections into those three types. This is mostly because `PlaceTy` projections require `&mut self`: they might have to `force_allocate` to be able to represent a project part-way into a local.
This PR finally fixes that, by enhancing `Place::Local` with an `offset` so that such an optimized place can point into a part of a place without having requiring an in-memory representation. If we later write to that place, we will still do `force_allocate` -- for now we don't have an optimized path in `write_immediate` that would avoid allocation for partial overwrites of immediately stored locals. But in `write_immediate` we have `&mut self` so at least this no longer pollutes all our type signatures.
(Ironically, I seem to distantly remember that many years ago, `Place::Local` *did* have an `offset`, and I removed it to simplify things. I guess I didn't realize why it was so useful... I am also not sure if this was actually used to achieve place projection on `&self` back then.)
The `offset` had type `Option<Size>`, where `None` represent "no projection was applied". This is needed because locals *can* be unsized (when they are arguments) but `Place::Local` cannot store metadata: if the offset is `None`, this refers to the entire local, so we can use the metadata of the local itself (which must be indirect); if a projection gets applied, since the local is indirect, it will turn into a `Place::Ptr`. (Note that even for indirect locals we can have `Place::Local`: when the local appears in MIR, we always start with `Place::Local`, and only check `frame.locals` later. We could eagerly normalize to `Place::Ptr` but I don't think that would actually simplify things much.)
Having done all that, we can finally properly abstract projections: we have a new `Projectable` trait that has the basic methods required for projecting, and then all projection methods are implemented for anything that implements that trait. We can even implement it for `ImmTy`! (Not that we need that, but it seems neat.) The visitor can be greatly simplified; it doesn't need its own trait any more but it can use the `Projectable` trait. We also don't need the separate `Mut` visitor any more; that was required only to reflect that projections on `PlaceTy` needed `&mut self`.
It is possible that there are some more `&mut self` that can now become `&self`... I guess we'll notice that over time.
r? `@oli-obk`
Reuse the MIR validator for MIR inlining
Instead of having the inliner home-cook its own validation, we just check that the substituted MIR body passes the regular validation.
The MIR validation is first split in two: control flow validation (MIR syntax and CFG invariants) and type validation (subtyping relationship in assignments and projections). Only the latter can be affected by instantiating type parameters.
clarify MIR uninit vs LLVM undef/poison
In [this LLVM discussion](https://discourse.llvm.org/t/rfc-load-instruction-uninitialized-memory-semantics/67481) I learned that mapping our uninitialized memory in MIR to poison in LLVM would be quite problematic due to the lack of a byte type. I am not sure where to write down this insight but this seems like a reasonable start.
miri will report an UB when calling a function that has a `#[target_feature(enable = ...)]` attribute is called and the required feature is not available.
"Available features" are the same that `is_x86_feature_detected!` (or equivalent) reports to be available during miri execution (which can be enabled or disabled with the `-C target-feature` flag).
Rename `adjustment::PointerCast` and variants using it to `PointerCoercion`
It makes it sounds like the `ExprKind` and `Rvalue` are supposed to represent all pointer related casts, when in reality their just used to share a little enum variants. Make it clear there these are only coercions and that people who see this and think "why are so many pointer related casts not in these variants" aren't insane.
This enum was added in #59987. I'm not sure whether the variant sharing is actually worth it, but this at least makes it less confusing.
r? oli-obk
It makes it sound like the `ExprKind` and `Rvalue` are supposed to represent all pointer related
casts, when in reality their just used to share a some enum variants. Make it clear there these
are only coercion to make it clear why only some pointer related "casts" are in the enum.
Split `SelectionContext::select` into fns that take a binder and don't
*most* usages of `SelectionContext::select` don't need to use a binder, but wrap them in a dummy because of the signature. Let's split this out into `SelectionContext::{select,poly_select}` and limit the usages of the latter.
Right now, we only have 3 places where we're calling `poly_select` -- fulfillment, internally within the old solver, and the auto-trait finder.
r? `@lcnr`
Move `TyCtxt::mk_x` to `Ty::new_x` where applicable
Part of rust-lang/compiler-team#616
turns out there's a lot of places we construct `Ty` this is a ridiculously huge PR :S
r? `@oli-obk`
Make simd_shuffle_indices use valtrees
This removes the second-to-last user of the `destructure_mir_constant` query. So in a follow-up we can remove the query and just move the query provider function directly into pretty printing (which is the last user).
cc `@rust-lang/clippy` there's a small functional change, but I think it is correct?
Switch the BB CFG cache from postorder to RPO
The `BasicBlocks` CFG cache is interesting:
- it stores a postorder, but `traversal::postorder` doesn't use it
- `traversal::reverse_postorder` does traverse the postorder cache backwards
- we do more RPO traversals than postorder traversals (around 20x on the perf.rlo benchmarks IIRC) but it's not cached
- a couple places here and there were manually reversing the non-cached postorder traversal
This PR switches the order of the cache, and makes a bit more use of it. This is a tiny win locally, but it's also for consistency and aesthetics.
r? `@ghost`
Take MIR dataflow analyses by mutable reference
The main motivation here is any analysis requiring dynamically sized scratch memory to work. One concrete example would be pointer target tracking, where tracking the results of a dereference can result in multiple possible targets. This leads to processing multi-level dereferences requiring the ability to handle a changing number of potential targets per step. A (simplified) function for this would be `fn apply_deref(potential_targets: &mut Vec<Target>)` which would use the scratch space contained in the analysis to send arguments and receive the results.
The alternative to this would be to wrap everything in a `RefCell`, which is what `MaybeRequiresStorage` currently does. This comes with a small perf cost and loses the compiler's guarantee that we don't try to take multiple borrows at the same time.
For the implementation:
* `AnalysisResults` is an unfortunate requirement to avoid an unconstrained type parameter error.
* `CloneAnalysis` could just be `Clone` instead, but that would result in more work than is required to have multiple cursors over the same result set.
* `ResultsVisitor` now takes the results type on in each function as there's no other way to have access to the analysis without cloning it. This could use an associated type rather than a type parameter, but the current approach makes it easier to not care about the type when it's not necessary.
* `MaybeRequiresStorage` now no longer uses a `RefCell`, but the graphviz formatter now does. It could be removed, but that would require even more changes and doesn't really seem necessary.
- Switch TypeId to 128 bits
- Hack around the fact that tracing-subscriber dislikes how TypeId is hashed
- Remove lowering of type_id128 from rustc_codegen_llvm
- Remove unnecessary `type_id128` intrinsic (just change return type of `type_id`)
- Only hash the lower 64 bits of the TypeId
- Reword comment
Replace const eval limit by a lint and add an exponential backoff warning
The lint triggers at the first power of 2 that comes after 1 million function calls or traversed back-edges (takes less than a second on usual programs). After the first emission, an unsilenceable warning is repeated at every following power of 2 terminators, causing it to get reported less and less the longer the evaluation runs.
cc `@rust-lang/wg-const-eval`
fixes#93481closes#67217
Only rewrite valtree-constants to patterns and keep other constants opaque
Now that we can reliably fall back to comparing constants with `PartialEq::eq` to the match scrutinee, we can
1. eagerly try to convert constants to valtrees
2. then deeply convert the valtree to a pattern
3. if the to-valtree conversion failed, create an "opaque constant" pattern.
This PR specifically avoids any behavioral changes or major cleanups. What we can now do as follow ups is
* move the two remaining call sites to `destructure_mir_constant` off that query
* make valtree to pattern conversion infallible
* this needs to be done after careful analysis of the effects. There may be user visible changes from that.
based on https://github.com/rust-lang/rust/pull/111768