Simplify implementation of Rust intrinsics by using type parameters in the cache
The current implementation of intrinsics have a lot of duplication to handle different overloads of overloaded LLVM intrinsic. This PR uses the **base name and the type parameters** in the cache instead of the full, overloaded name. This has the benefit that `call_intrinsic` doesn't need to provide the full name, rather the type parameters (which is most of the time more available). This uses `LLVMIntrinsicCopyOverloadedName2` to get the overloaded name from the base name and the type parameters, and only uses it to declare the function.
(originally was part of rust-lang/rust#140763, split off later)
`@rustbot` label A-codegen A-LLVM
r? codegen
Unimplement unsized_locals
Implements https://github.com/rust-lang/compiler-team/issues/630
Tracking issue here: https://github.com/rust-lang/rust/issues/111942
Note that this just removes the feature, not the implementation, and does not touch `unsized_fn_params`. This is because it is required to support `Box<dyn FnOnce()>: FnOnce()`.
There may be more that should be removed (possibly in follow up prs)
- the `forget_unsized` function and `forget` intrinsic.
- the `unsized_locals` test directory; I've just fixed up the tests for now
- various codegen support for unsized values and allocas
cc ``@JakobDegen`` ``@oli-obk`` ``@Noratrieb`` ``@programmerjake`` ``@bjorn3``
``@rustbot`` label F-unsized_locals
Fixesrust-lang/rust#79409
add `extern "custom"` functions
tracking issue: rust-lang/rust#140829
previous discussion: https://github.com/rust-lang/rust/issues/140566
In short, an `extern "custom"` function is a function with a custom ABI, that rust does not know about. Therefore, such functions can only be defined with `#[unsafe(naked)]` and `naked_asm!`, or via an `extern "C" { /* ... */ }` block. These functions cannot be called using normal rust syntax: calling them can only be done from inline assembly.
The motivation is low-level scenarios where a custom calling convention is used. Currently, we often pick `extern "C"`, but that is a lie because the function does not actually respect the C calling convention.
At the moment `"custom"` seems to be the name with the most support. That name is not final, but we need to pick something to actually implement this.
r? `@traviscross`
cc `@tgross35`
try-job: x86_64-apple-2
retpoline and retpoline-external-thunk flags (target modifiers) to enable retpoline-related target features
`-Zretpoline` and `-Zretpoline-external-thunk` flags are target modifiers (tracked to be equal in linked crates).
* Enables target features for `-Zretpoline-external-thunk`:
`+retpoline-external-thunk`, `+retpoline-indirect-branches`, `+retpoline-indirect-calls`.
* Enables target features for `-Zretpoline`:
`+retpoline-indirect-branches`, `+retpoline-indirect-calls`.
It corresponds to clang -mretpoline & -mretpoline-external-thunk flags.
Also this PR forbids to specify those target features manually (warning).
Issue: rust-lang/rust#116852
store `target.min_global_align` as an `Align`
Parse the alignment properly when the target is defined/parsed, and error out on invalid alignment values. That means this work doesn't need to happen for every global in each backend.
Many of `std`'s dependency have a dependency on the crates.io
`compiler-builtins` when used with the feature
`rustc-std-workspace-core`. Use a Cargo patch to select the in-tree
version instead.
`compiler-builtins` is also added as a dependency of
`rustc-std-workspace-core` so these crates can remove their crates.io
dependency in the future.
Replace ad-hoc ABI "adjustments" with an `AbiMap` to `CanonAbi`
Our `conv_from_spec_abi`, `adjust_abi`, and `is_abi_supported` combine to give us a very confusing way of reasoning about what _actual_ calling convention we want to lower our code to and whether we want to compile the resulting code at all. Instead of leaving this code as a miniature adventure game in which someone tries to combine stateful mutations into a Rube Goldberg machine that will let them escape the maze and arrive at the promised land of codegen, we let `AbiMap` devour this complexity. Once you have an `AbiMap`, you can answer which `ExternAbi`s will lower to what `CanonAbi`s (and whether they will lower at all).
Removed:
- `conv_from_spec_abi` replaced by `AbiMap::canonize_abi`
- `adjust_abi` replaced by same
- `Conv::PreserveAll` as unused
- `Conv::Cold` as unused
- `enum Conv` replaced by `enum CanonAbi`
target-spec.json changes:
- If you have a target-spec.json then now your "entry-abi" key will be specified in terms of one of the `"{abi}"` strings Rust recognizes, e.g.
```json
"entry-abi": "C",
"entry-abi": "win64",
"entry-abi": "aapcs",
```
atomic_load intrinsic: use const generic parameter for ordering
We have a gazillion intrinsics for the atomics because we encode the ordering into the intrinsic name rather than making it a parameter. This is particularly bad for those operations that take two orderings. Let's fix that!
This PR only converts `load`, to see if there's any feedback that would fundamentally change the strategy we pursue for the const generic intrinsics.
The first two commits are preparation and could be a separate PR if you prefer.
`@BoxyUwU` -- I hope this is a use of const generics that is unlikely to explode? All we need is a const generic of enum type. We could funnel it through an integer if we had to but an enum is obviously nicer...
`@bjorn3` it seems like the cranelift backend entirely ignores the ordering?
There is no safety contract and I don't think any of them can actually
cause UB in more ways than passing malicious source code to rustc can.
While LtoModuleCodegen::optimize says that the returned ModuleCodegen
points into the LTO module, the LTO module has already been dropped by
the time this function returns, so if the returned ModuleCodegen indeed
points into the LTO module, we would have seen crashes on every LTO
compilation, which we don't. As such the comment is outdated.
- Rename `USED` to `USED_COMPILER` to better reflect its behavior.
- Reorder some items to group the used and allocator flags together
- Renumber them without gaps
make `rustc_attr_parsing` less dominant in the rustc crate graph
It has/had a glob re-export of `rustc_attr_data_structures`, which is a crate much lower in the graph, and a lot of crates were using it *just* (or *mostly*) for that re-export, while they can rely on `rustc_attr_data_structures` directly.
Previous graph:

Graph with this PR:

The first commit keeps the re-export, and just changes the dependency if possible. The second commit is the "breaking change" which removes the re-export, and "explicitly" adds the `rustc_attr_data_structures` dependency where needed. It also switches over some src/tools/*.
The second commit is actually a lot more involved than I expected. Please let me know if it's a better idea to back it out and just keep the first commit.
Use intrinsics for `{f16,f32,f64,f128}::{minimum,maximum}` operations
This PR creates intrinsics for `{f16,f32,f64,f64}::{minimum,maximum}` operations.
This wasn't done when those operations were added as the LLVM support was too weak but now that LLVM has libcalls for unsupported platforms we can finally use them.
Cranelift and GCC[^1] support are partial, Cranelift doesn't support `f16` and `f128`, while GCC doesn't support `f16`.
r? `@tgross35`
try-job: aarch64-gnu
try-job: dist-various-1
try-job: dist-various-2
[^1]: https://www.gnu.org/software///gnulib/manual/html_node/Functions-in-_003cmath_002eh_003e.html
remove 'unordered' atomic intrinsics
As their doc comment already indicates, these operations do not currently have a place in our memory model. The intrinsics were introduced to support a hack in compiler-builtins, but that hack recently got removed (see https://github.com/rust-lang/compiler-builtins/issues/788).
Support for `f16` and `f128` is varied across targets, backends, and
backend versions. Eventually we would like to reach a point where all
backends support these approximately equally, but until then we have to
work around some of these nuances of support being observable.
Introduce the `cfg_target_has_reliable_f16_f128` internal feature, which
provides the following new configuration gates:
* `cfg(target_has_reliable_f16)`
* `cfg(target_has_reliable_f16_math)`
* `cfg(target_has_reliable_f128)`
* `cfg(target_has_reliable_f128_math)`
`reliable_f16` and `reliable_f128` indicate that basic arithmetic for
the type works correctly. The `_math` versions indicate that anything
relying on `libm` works correctly, since sometimes this hits a separate
class of codegen bugs.
These options match configuration set by the build script at [1]. The
logic for LLVM support is duplicated as-is from the same script. There
are a few possible updates that will come as a follow up.
The config introduced here is not planned to ever become stable, it is
only intended to replace the build scripts for `std` tests and
`compiler-builtins` that don't have any way to configure based on the
codegen backend.
MCP: https://github.com/rust-lang/compiler-team/issues/866
Closes: https://github.com/rust-lang/compiler-team/issues/866
[1]: 555e1d0386/library/std/build.rs (L84-L186)