A partial stabilization that only affects:
- AllocType<T>::new_uninit
- AllocType<T>::assume_init
- AllocType<[T]>::new_uninit_slice
- AllocType<[T]>::assume_init
where "AllocType" is Box, Rc, or Arc
Stabilize associated type bounds (RFC 2289)
This PR stabilizes associated type bounds, which were laid out in [RFC 2289]. This gives us a shorthand to express nested type bounds that would otherwise need to be expressed with nested `impl Trait` or broken into several `where` clauses.
### What are we stabilizing?
We're stabilizing the associated item bounds syntax, which allows us to put bounds in associated type position within other bounds, i.e. `T: Trait<Assoc: Bounds...>`. See [RFC 2289] for motivation.
In all position, the associated type bound syntax expands into a set of two (or more) bounds, and never anything else (see "How does this differ[...]" section for more info).
Associated type bounds are stabilized in four positions:
* **`where` clauses (and APIT)** - This is equivalent to breaking up the bound into two (or more) `where` clauses. For example, `where T: Trait<Assoc: Bound>` is equivalent to `where T: Trait, <T as Trait>::Assoc: Bound`.
* **Supertraits** - Similar to above, `trait CopyIterator: Iterator<Item: Copy> {}`. This is almost equivalent to breaking up the bound into two (or more) `where` clauses; however, the bound on the associated item is implied whenever the trait is used. See #112573/#112629.
* **Associated type item bounds** - This allows constraining the *nested* rigid projections that are associated with a trait's associated types. e.g. `trait Trait { type Assoc: Trait2<Assoc2: Copy>; }`.
* **opaque item bounds (RPIT, TAIT)** - This allows constraining associated types that are associated with the opaque without having to *name* the opaque. For example, `impl Iterator<Item: Copy>` defines an iterator whose item is `Copy` without having to actually name that item bound.
The latter three are not expressible in surface Rust (though for associated type item bounds, this will change in #120752, which I don't believe should block this PR), so this does represent a slight expansion of what can be expressed in trait bounds.
### How does this differ from the RFC?
Compared to the RFC, the current implementation *always* desugars associated type bounds to sets of `ty::Clause`s internally. Specifically, it does *not* introduce a position-dependent desugaring as laid out in [RFC 2289], and in particular:
* It does *not* desugar to anonymous associated items in associated type item bounds.
* It does *not* desugar to nested RPITs in RPIT bounds, nor nested TAITs in TAIT bounds.
This position-dependent desugaring laid out in the RFC existed simply to side-step limitations of the trait solver, which have mostly been fixed in #120584. The desugaring laid out in the RFC also added unnecessary complication to the design of the feature, and introduces its own limitations to, for example:
* Conditionally lowering to nested `impl Trait` in certain positions such as RPIT and TAIT means that we inherit the limitations of RPIT/TAIT, namely lack of support for higher-ranked opaque inference. See this code example: https://github.com/rust-lang/rust/pull/120752#issuecomment-1979412531.
* Introducing anonymous associated types makes traits no longer object safe, since anonymous associated types are not nameable, and all associated types must be named in `dyn` types.
This last point motivates why this PR is *not* stabilizing support for associated type bounds in `dyn` types, e.g, `dyn Assoc<Item: Bound>`. Why? Because `dyn` types need to have *concrete* types for all associated items, this would necessitate a distinct lowering for associated type bounds, which seems both complicated and unnecessary compared to just requiring the user to write `impl Trait` themselves. See #120719.
### Implementation history:
Limited to the significant behavioral changes and fixes and relevant PRs, ping me if I left something out--
* #57428
* #108063
* #110512
* #112629
* #120719
* #120584Closes#52662
[RFC 2289]: https://rust-lang.github.io/rfcs/2289-associated-type-bounds.html
Vec::try_with_capacity
Related to #91913
Implements try_with_capacity for `Vec`, `VecDeque`, and `String`. I can follow it up with more collections if desired.
`Vec::try_with_capacity()` is functionally equivalent to the current stable:
```rust
let mut v = Vec::new();
v.try_reserve_exact(n)?
```
However, `try_reserve` calls non-inlined `finish_grow`, which requires old and new `Layout`, and is designed to reallocate memory. There is benefit to using `try_with_capacity`, besides syntax convenience, because it generates much smaller code at the call site with a direct call to the allocator. There's codegen test included.
It's also a very desirable functionality for users of `no_global_oom_handling` (Rust-for-Linux), since it makes a very commonly used function available in that environment (`with_capacity` is used much more frequently than all `(try_)reserve(_exact)`).
Add support for making lib features internal
We have the notion of an "internal" lang feature: a feature that is never intended to be stabilized, and using which can cause ICEs and other issues without that being considered a bug.
This extends that idea to lib features as well. It is an alternative to https://github.com/rust-lang/rust/pull/115623: instead of using an attribute to declare lib features internal, we simply do this based on the name. Everything ending in `_internals` or `_internal` is considered internal.
Then we rename `core_intrinsics` to `core_intrinsics_internal`, which fixes https://github.com/rust-lang/rust/issues/115597.
Expand in-place iteration specialization to Flatten, FlatMap and ArrayChunks
This enables the following cases to collect in-place:
```rust
let v = vec![[0u8; 4]; 1024]
let v: Vec<_> = v.into_iter().flatten().collect();
let v: Vec<Option<NonZeroUsize>> = vec![NonZeroUsize::new(0); 1024];
let v: Vec<_> = v.into_iter().flatten().collect();
let v = vec![u8; 4096];
let v: Vec<_> = v.into_iter().array_chunks::<4>().collect();
```
Especially the nicheful-option-flattening should be useful in real code.
Partial stabilization of `once_cell`
This PR aims to stabilize a portion of the `once_cell` feature:
- `core::cell::OnceCell`
- `std::cell::OnceCell` (re-export of the above)
- `std::sync::OnceLock`
This will leave `LazyCell` and `LazyLock` unstabilized, which have been moved to the `lazy_cell` feature flag.
Tracking issue: https://github.com/rust-lang/rust/issues/74465 (does not fully close, but it may make sense to move to a new issue)
Future steps for separate PRs:
- ~~Add `#[inline]` to many methods~~ #105651
- Update cranelift usage of the `once_cell` crate
- Update rust-analyzer usage of the `once_cell` crate
- Update error messages discussing once_cell
## To be stabilized API summary
```rust
// core::cell (in core/cell/once.rs)
pub struct OnceCell<T> { .. }
impl<T> OnceCell<T> {
pub const fn new() -> OnceCell<T>;
pub fn get(&self) -> Option<&T>;
pub fn get_mut(&mut self) -> Option<&mut T>;
pub fn set(&self, value: T) -> Result<(), T>;
pub fn get_or_init<F>(&self, f: F) -> &T where F: FnOnce() -> T;
pub fn into_inner(self) -> Option<T>;
pub fn take(&mut self) -> Option<T>;
}
impl<T: Clone> Clone for OnceCell<T>;
impl<T: Debug> Debug for OnceCell<T>
impl<T> Default for OnceCell<T>;
impl<T> From<T> for OnceCell<T>;
impl<T: PartialEq> PartialEq for OnceCell<T>;
impl<T: Eq> Eq for OnceCell<T>;
```
```rust
// std::sync (in std/sync/once_lock.rs)
impl<T> OnceLock<T> {
pub const fn new() -> OnceLock<T>;
pub fn get(&self) -> Option<&T>;
pub fn get_mut(&mut self) -> Option<&mut T>;
pub fn set(&self, value: T) -> Result<(), T>;
pub fn get_or_init<F>(&self, f: F) -> &T where F: FnOnce() -> T;
pub fn into_inner(self) -> Option<T>;
pub fn take(&mut self) -> Option<T>;
}
impl<T: Clone> Clone for OnceLock<T>;
impl<T: Debug> Debug for OnceLock<T>;
impl<T> Default for OnceLock<T>;
impl<#[may_dangle] T> Drop for OnceLock<T>;
impl<T> From<T> for OnceLock<T>;
impl<T: PartialEq> PartialEq for OnceLock<T>
impl<T: Eq> Eq for OnceLock<T>;
impl<T: RefUnwindSafe + UnwindSafe> RefUnwindSafe for OnceLock<T>;
unsafe impl<T: Send> Send for OnceLock<T>;
unsafe impl<T: Sync + Send> Sync for OnceLock<T>;
impl<T: UnwindSafe> UnwindSafe for OnceLock<T>;
```
No longer planned as part of this PR, and moved to the `rust_cell_try` feature gate:
```rust
impl<T> OnceCell<T> {
pub fn get_or_try_init<F, E>(&self, f: F) -> Result<&T, E> where F: FnOnce() -> Result<T, E>;
}
impl<T> OnceLock<T> {
pub fn get_or_try_init<F, E>(&self, f: F) -> Result<&T, E> where F: FnOnce() -> Result<T, E>;
}
```
I am new to this process so would appreciate mentorship wherever needed.
Stabilize `nonnull_slice_from_raw_parts`
FCP is done: https://github.com/rust-lang/rust/issues/71941#issuecomment-1100910416
Note that this doesn't const-stabilize `NonNull::slice_from_raw_parts` as `slice_from_raw_parts_mut` isn't const-stabilized yet. Given #67456 and #57349, it's not likely available soon, meanwhile, stabilizing only the feature makes some sense, I think.
Closes#71941
Currently pretty much all of the btree_map and btree_set ones fail, as
well as linked_list::DrainFilter.
error: higher-ranked lifetime error
--> library/alloc/tests/autotraits.rs:38:5
|
38 | / require_send_sync(async {
39 | | let _v = None::<alloc::collections::btree_map::Iter<'_, &u32, &u32>>;
40 | | async {}.await;
41 | | });
| |______^
|
= note: could not prove `impl Future<Output = ()>: Send`
error: implementation of `Send` is not general enough
--> library/alloc/tests/autotraits.rs:56:5
|
56 | / require_send_sync(async {
57 | | let _v = None::<
58 | | alloc::collections::btree_map::DrainFilter<
59 | | '_,
... |
65 | | async {}.await;
66 | | });
| |______^ implementation of `Send` is not general enough
|
= note: `Send` would have to be implemented for the type `&'0 u32`, for any lifetime `'0`...
= note: ...but `Send` is actually implemented for the type `&'1 u32`, for some specific lifetime `'1`
error: implementation of `Send` is not general enough
--> library/alloc/tests/autotraits.rs:68:5
|
68 | / require_send_sync(async {
69 | | let _v = None::<alloc::collections::btree_map::Entry<'_, &u32, &u32>>;
70 | | async {}.await;
71 | | });
| |______^ implementation of `Send` is not general enough
|
= note: `Send` would have to be implemented for the type `&'0 u32`, for any lifetime `'0`...
= note: ...but `Send` is actually implemented for the type `&'1 u32`, for some specific lifetime `'1`
error: higher-ranked lifetime error
--> library/alloc/tests/autotraits.rs:88:5
|
88 | / require_send_sync(async {
89 | | let _v = None::<alloc::collections::btree_map::Iter<'_, &u32, &u32>>;
90 | | async {}.await;
91 | | });
| |______^
|
= note: could not prove `impl Future<Output = ()>: Send`
error: implementation of `Send` is not general enough
--> library/alloc/tests/autotraits.rs:93:5
|
93 | / require_send_sync(async {
94 | | let _v = None::<alloc::collections::btree_map::IterMut<'_, &u32, &u32>>;
95 | | async {}.await;
96 | | });
| |______^ implementation of `Send` is not general enough
|
= note: `Send` would have to be implemented for the type `&'0 u32`, for any lifetime `'0`...
= note: ...but `Send` is actually implemented for the type `&'1 u32`, for some specific lifetime `'1`
error: higher-ranked lifetime error
--> library/alloc/tests/autotraits.rs:98:5
|
98 | / require_send_sync(async {
99 | | let _v = None::<alloc::collections::btree_map::Keys<'_, &u32, &u32>>;
100 | | async {}.await;
101 | | });
| |______^
|
= note: could not prove `impl Future<Output = ()>: Send`
error: implementation of `Send` is not general enough
--> library/alloc/tests/autotraits.rs:103:5
|
103 | / require_send_sync(async {
104 | | let _v = None::<alloc::collections::btree_map::OccupiedEntry<'_, &u32, &u32>>;
105 | | async {}.await;
106 | | });
| |______^ implementation of `Send` is not general enough
|
= note: `Send` would have to be implemented for the type `&'0 u32`, for any lifetime `'0`...
= note: ...but `Send` is actually implemented for the type `&'1 u32`, for some specific lifetime `'1`
error: implementation of `Send` is not general enough
--> library/alloc/tests/autotraits.rs:108:5
|
108 | / require_send_sync(async {
109 | | let _v = None::<alloc::collections::btree_map::OccupiedError<'_, &u32, &u32>>;
110 | | async {}.await;
111 | | });
| |______^ implementation of `Send` is not general enough
|
= note: `Send` would have to be implemented for the type `&'0 u32`, for any lifetime `'0`...
= note: ...but `Send` is actually implemented for the type `&'1 u32`, for some specific lifetime `'1`
error: higher-ranked lifetime error
--> library/alloc/tests/autotraits.rs:113:5
|
113 | / require_send_sync(async {
114 | | let _v = None::<alloc::collections::btree_map::Range<'_, &u32, &u32>>;
115 | | async {}.await;
116 | | });
| |______^
|
= note: could not prove `impl Future<Output = ()>: Send`
error: implementation of `Send` is not general enough
--> library/alloc/tests/autotraits.rs:118:5
|
118 | / require_send_sync(async {
119 | | let _v = None::<alloc::collections::btree_map::RangeMut<'_, &u32, &u32>>;
120 | | async {}.await;
121 | | });
| |______^ implementation of `Send` is not general enough
|
= note: `Send` would have to be implemented for the type `&'0 u32`, for any lifetime `'0`...
= note: ...but `Send` is actually implemented for the type `&'1 u32`, for some specific lifetime `'1`
error: implementation of `Send` is not general enough
--> library/alloc/tests/autotraits.rs:123:5
|
123 | / require_send_sync(async {
124 | | let _v = None::<alloc::collections::btree_map::VacantEntry<'_, &u32, &u32>>;
125 | | async {}.await;
126 | | });
| |______^ implementation of `Send` is not general enough
|
= note: `Send` would have to be implemented for the type `&'0 u32`, for any lifetime `'0`...
= note: ...but `Send` is actually implemented for the type `&'1 u32`, for some specific lifetime `'1`
error: higher-ranked lifetime error
--> library/alloc/tests/autotraits.rs:128:5
|
128 | / require_send_sync(async {
129 | | let _v = None::<alloc::collections::btree_map::Values<'_, &u32, &u32>>;
130 | | async {}.await;
131 | | });
| |______^
|
= note: could not prove `impl Future<Output = ()>: Send`
error: implementation of `Send` is not general enough
--> library/alloc/tests/autotraits.rs:133:5
|
133 | / require_send_sync(async {
134 | | let _v = None::<alloc::collections::btree_map::ValuesMut<'_, &u32, &u32>>;
135 | | async {}.await;
136 | | });
| |______^ implementation of `Send` is not general enough
|
= note: `Send` would have to be implemented for the type `&'0 u32`, for any lifetime `'0`...
= note: ...but `Send` is actually implemented for the type `&'1 u32`, for some specific lifetime `'1`
error: higher-ranked lifetime error
--> library/alloc/tests/autotraits.rs:146:5
|
146 | / require_send_sync(async {
147 | | let _v = None::<alloc::collections::btree_set::Difference<'_, &u32>>;
148 | | async {}.await;
149 | | });
| |______^
|
= note: could not prove `impl Future<Output = ()>: Send`
error: implementation of `Send` is not general enough
--> library/alloc/tests/autotraits.rs:151:5
|
151 | / require_send_sync(async {
152 | | let _v = None::<alloc::collections::btree_set::DrainFilter<'_, &u32, fn(&&u32) -> bool>>;
153 | | async {}.await;
154 | | });
| |______^ implementation of `Send` is not general enough
|
= note: `Send` would have to be implemented for the type `&'0 u32`, for any lifetime `'0`...
= note: ...but `Send` is actually implemented for the type `&'1 u32`, for some specific lifetime `'1`
error: higher-ranked lifetime error
--> library/alloc/tests/autotraits.rs:156:5
|
156 | / require_send_sync(async {
157 | | let _v = None::<alloc::collections::btree_set::Intersection<'_, &u32>>;
158 | | async {}.await;
159 | | });
| |______^
|
= note: could not prove `impl Future<Output = ()>: Send`
error: higher-ranked lifetime error
--> library/alloc/tests/autotraits.rs:166:5
|
166 | / require_send_sync(async {
167 | | let _v = None::<alloc::collections::btree_set::Iter<'_, &u32>>;
168 | | async {}.await;
169 | | });
| |______^
|
= note: could not prove `impl Future<Output = ()>: Send`
error: higher-ranked lifetime error
--> library/alloc/tests/autotraits.rs:171:5
|
171 | / require_send_sync(async {
172 | | let _v = None::<alloc::collections::btree_set::Range<'_, &u32>>;
173 | | async {}.await;
174 | | });
| |______^
|
= note: could not prove `impl Future<Output = ()>: Send`
error: higher-ranked lifetime error
--> library/alloc/tests/autotraits.rs:176:5
|
176 | / require_send_sync(async {
177 | | let _v = None::<alloc::collections::btree_set::SymmetricDifference<'_, &u32>>;
178 | | async {}.await;
179 | | });
| |______^
|
= note: could not prove `impl Future<Output = ()>: Send`
error: higher-ranked lifetime error
--> library/alloc/tests/autotraits.rs:181:5
|
181 | / require_send_sync(async {
182 | | let _v = None::<alloc::collections::btree_set::Union<'_, &u32>>;
183 | | async {}.await;
184 | | });
| |______^
|
= note: could not prove `impl Future<Output = ()>: Send`
error: future cannot be sent between threads safely
--> library/alloc/tests/autotraits.rs:243:23
|
243 | require_send_sync(async {
| _______________________^
244 | | let _v =
245 | | None::<alloc::collections::linked_list::DrainFilter<'_, &u32, fn(&mut &u32) -> bool>>;
246 | | async {}.await;
247 | | });
| |_____^ future created by async block is not `Send`
|
= help: within `impl Future<Output = ()>`, the trait `Send` is not implemented for `NonNull<std::collections::linked_list::Node<&u32>>`
note: future is not `Send` as this value is used across an await
--> library/alloc/tests/autotraits.rs:246:17
|
244 | let _v =
| -- has type `Option<std::collections::linked_list::DrainFilter<'_, &u32, for<'a, 'b> fn(&'a mut &'b u32) -> bool>>` which is not `Send`
245 | None::<alloc::collections::linked_list::DrainFilter<'_, &u32, fn(&mut &u32) -> bool>>;
246 | async {}.await;
| ^^^^^^ await occurs here, with `_v` maybe used later
247 | });
| - `_v` is later dropped here
note: required by a bound in `require_send_sync`
--> library/alloc/tests/autotraits.rs:3:25
|
3 | fn require_send_sync<T: Send + Sync>(_: T) {}
| ^^^^ required by this bound in `require_send_sync`
error: future cannot be shared between threads safely
--> library/alloc/tests/autotraits.rs:243:23
|
243 | require_send_sync(async {
| _______________________^
244 | | let _v =
245 | | None::<alloc::collections::linked_list::DrainFilter<'_, &u32, fn(&mut &u32) -> bool>>;
246 | | async {}.await;
247 | | });
| |_____^ future created by async block is not `Sync`
|
= help: within `impl Future<Output = ()>`, the trait `Sync` is not implemented for `NonNull<std::collections::linked_list::Node<&u32>>`
note: future is not `Sync` as this value is used across an await
--> library/alloc/tests/autotraits.rs:246:17
|
244 | let _v =
| -- has type `Option<std::collections::linked_list::DrainFilter<'_, &u32, for<'a, 'b> fn(&'a mut &'b u32) -> bool>>` which is not `Sync`
245 | None::<alloc::collections::linked_list::DrainFilter<'_, &u32, fn(&mut &u32) -> bool>>;
246 | async {}.await;
| ^^^^^^ await occurs here, with `_v` maybe used later
247 | });
| - `_v` is later dropped here
note: required by a bound in `require_send_sync`
--> library/alloc/tests/autotraits.rs:3:32
|
3 | fn require_send_sync<T: Send + Sync>(_: T) {}
| ^^^^ required by this bound in `require_send_sync`
Stabilize bench_black_box
This PR stabilize `feature(bench_black_box)`.
```rust
pub fn black_box<T>(dummy: T) -> T;
```
The FCP was completed in https://github.com/rust-lang/rust/issues/64102.
`@rustbot` label +T-libs-api -T-libs
Since `len` and `is_empty` are not const stable yet, this also
creates a new feature for them since they previously used the same
`const_btree_new` feature.
Add `vec::Drain{,Filter}::keep_rest`
This PR adds `keep_rest` methods to `vec::Drain` and `vec::DrainFilter` under `drain_keep_rest` feature gate:
```rust
// mod alloc::vec
impl<T, A: Allocator> Drain<'_, T, A> {
pub fn keep_rest(self);
}
impl<T, F, A: Allocator> DrainFilter<'_, T, F, A>
where
F: FnMut(&mut T) -> bool,
{
pub fn keep_rest(self);
}
```
Both these methods cancel draining of elements that were not yet yielded from the iterators. While this needs more testing & documentation, I want at least start the discussion. This may be a potential way out of the "should `DrainFilter` exhaust itself on drop?" argument.
Optimized vec::IntoIter::next_chunk impl
```
x86_64v1, default
test vec::bench_next_chunk ... bench: 696 ns/iter (+/- 22)
x86_64v1, pr
test vec::bench_next_chunk ... bench: 309 ns/iter (+/- 4)
znver2, default
test vec::bench_next_chunk ... bench: 17,272 ns/iter (+/- 117)
znver2, pr
test vec::bench_next_chunk ... bench: 211 ns/iter (+/- 3)
```
On znver2 the default impl seems to be slow due to different inlining decisions. It goes through `core::array::iter_next_chunk`
which has a deep call tree.
Stabilize the `core_c_str` and `alloc_c_string` feature gates.
Change `std::ffi` to re-export these types rather than creating type
aliases, since they now have matching stability.
This only stabilizes the base types, not the non-zero variants, since
those have their own separate tracking issue and have not gone through
FCP to stabilize.
Classify BinaryHeap & LinkedList unit tests as such
All but one of these so-called integration test case are unit tests, just like btree's were (#75531). In addition, reunite the unit tests of linked_list that were split off during #23104 because they needed to remain unit tests (they were later moved to the separate file they are in during #63207). The two sets could remain separate files, but I opted to merge them back together, more or less in the order they used to be, apart from one duplicate name `test_split_off` and one duplicate tiny function `list_from`.