Correctly note item kind in `NonConstFunctionCall` error message
Don't just call everything a "`fn`". This is more consistent with the error message we give for conditionally-const items, which do note the item's def kind.
r? fmease, this is a prerequisite for making those `~const PartialEq` error messages better. Re-roll if you're busy or don't want to review this.
core: fix const ptr::swap_nonoverlapping when there are pointers at odd offsets
Ensure that the pointer gets swapped correctly even if it is not stored at an aligned offset. This rules out implementations that copy things in a `usize` loop -- so our implementation needs to be adjusted to avoid such a loop when running in const context.
Part of https://github.com/rust-lang/rust/issues/133668
Begin to implement type system layer of unsafe binders
Mostly TODOs, but there's a lot of match arms that are basically just noops so I wanted to split these out before I put up the MIR lowering/projection part of this logic.
r? oli-obk
Tracking:
- https://github.com/rust-lang/rust/issues/130516
Clean up a few rmake tests
Now I'm aware it's a bit late to start participating in the Advent of Tests, but here are a few cleanups in the rmake tests to put under the 🎄 anyways. A handful of unused imports, some warnings, and a couple typos.
r? `@jieyouxu` 🎅
opt-dist: propagate channel info to bootstrap
Fixes#133503.
Previously, `tests/ui/bootstrap/rustc_bootstap.rs` [sic] failed during [beta bump](https://github.com/rust-lang/rust/pull/133447#issuecomment-2501298794) in opt-dist tests. This is because:
- `opt-dist` tried to run `./x test` against beta-channel dist `rustc` through `bootstrap`.
- The dist build produced during the beta bump produces a `rustc` which correctly thinks that it is a beta compiler based on `src/ci/channel` info.
- `opt-dist` tries to run `./x test` on the beta `rustc` from the dist build, but without specifying channel through a synthetic `config.toml`, so `bootstrap` tells `compiletest` that we're on the `nightly` channel (by default).
- Now there's a channel mismatch: `compiletest` believes the `rustc` under test is a *nightly* rustc, but the `rustc` under test actually considers itself a *beta* rustc. This means that `//@ only-nightly` will be satisfied yet the test will fail as the *beta* rustc is not a *nightly* rustc.
This PR:
- Fixes the test failure during beta bump (i.e. #133503) by having `opt-dist` faithfully report the channel of the dist `rustc` being tested (i.e. "beta" in a beta bump PR). This will properly make the test be ignored during beta bump as the `rustc` under test is not a *nightly* rustc.
- Fixes the test name `rustc_bootstap.rs` -> `rustc_bootstrap.rs`. No more stapping.
- Slightly adjusts the doc comment in the test to make it more clear.
I ran a try-job against the beta branch (explicitly running the opt-dist tests by modifying the job definition) with these changes in #134131, and it appears that the try-job was [successful](https://github.com/rust-lang/rust/pull/134131#issuecomment-2555492215). The two commits in this PR are cherry-picked from #134131, with the test commit slightly modified (to also adjust the test comments).
r? `@Kobzol` (or compiler or bootstrap or infra I guess?)
Revert stabilization of the `#[coverage(..)]` attribute
Due to a process mixup, the PR to stabilize the `#[coverage(..)]` attribute (#130766) was merged while there are still outstanding concerns. The default action in that situation is to revert, and the feature is not sufficiently urgent or uncontroversial to justify special treatment, so this PR reverts that stabilization.
---
- A key point that came up in offline discussions is that unlike most user-facing features, this one never had a proper RFC, so parts of the normal stabilization process that implicitly rely on an RFC break down in this case.
- As the implementor and de-facto owner of the feature in its current form, I would like to think that I made good choices in designing and implementing it, but I don't feel comfortable proceeding to stabilization without further scrutiny.
- There hasn't been a clear opportunity for T-compiler to weigh in or express concerns prior to stabilization.
- The stabilization PR cites a T-lang FCP that occurred in the tracking issue, but due to the messy design and implementation history (and lack of a clear RFC), it's unclear what that FCP approval actually represents in this case.
- At the very least, we should not proceed without a clear statement from T-lang or the relevant members about the team's stance on this feature, especially in light of the other concerns listed here.
- The existing user-facing documentation doesn't clearly reflect which parts of the feature are stable commitments, and which parts are subject to change. And there doesn't appear to be a clear consensus anywhere about where that line is actually drawn, or whether the chosen boundary is acceptable to the relevant teams and individuals.
- For example, the [stabilization report comment](https://github.com/rust-lang/rust/issues/84605#issuecomment-2166514660) mentions that some aspects are subject to change, but that text isn't consistent with my earlier comments, and there doesn't appear to have been any explicit discussion or approval process.
- [The current reference text](https://github.com/rust-lang/reference/blob/4dfaa4f/src/attributes/coverage-instrumentation.md) doesn't mention this distinction at all, and instead simply describes the current implementation behaviour.
- When the implementation was changed to its current form, the associated user-facing error messages were not updated, so they still refer to the attribute only being allowed on functions and closures.
- On its own, this might have been reasonable to fix-forward in the absence of other concerns, but the fact that it never came up earlier highlights the breakdown in process that has occurred here.
---
Apologies to everyone who was excited for this stabilization to land, but unfortunately it simply isn't ready yet.
Add `ignore-rustc-debug-assertions` to `tests/ui/associated-consts/issue-93775.rs`
Closes#132111. Closes#133432.
I think this test case is flaky because the recursive calls happen to hit the upper limit of the call stack.
IMO, this may not be an issue, as it's reasonable for overly complex code to require additional build configurations (such as increasing the call stack size).
After set `rust.debug-assertions` is true, the test case requires a larger call stack, so disable it on `rust.debug-assertions=true`.
r? jieyouxu
try-job: x86_64-msvc
try-job: i686-msvc
Rollup of 6 pull requests
Successful merges:
- #130289 (docs: Permissions.readonly() also ignores root user special permissions)
- #134583 (docs: `transmute<&mut T, &mut MaybeUninit<T>>` is unsound when exposed to safe code)
- #134611 (Align `{i686,x86_64}-win7-windows-msvc` to their parent targets)
- #134629 (compiletest: Allow using a specific debugger when running debuginfo tests)
- #134642 (Implement `PointerLike` for `isize`, `NonNull`, `Cell`, `UnsafeCell`, and `SyncUnsafeCell`.)
- #134660 (Fix spacing of markdown code block fences in compiler rustdoc)
r? `@ghost`
`@rustbot` modify labels: rollup
Implement `PointerLike` for `isize`, `NonNull`, `Cell`, `UnsafeCell`, and `SyncUnsafeCell`.
* Implementing `PointerLike` for `UnsafeCell` enables the possibility of interior mutable `dyn*` values. Since this means potentially exercising new codegen behavior, I added a test for it in `tests/ui/dyn-star/cell.rs`. Please let me know if there are further sorts of tests that should be written, or other care that should be taken with this change.
It is unfortunately not possible without compiler changes to implement `PointerLike` for `Atomic*` types, since they are not `repr(transparent)` (and, in theory if not in practice, `AtomicUsize`'s alignment may be greater than that of an ordinary pointer or `usize`).
* Implementing `PointerLike` for `NonNull` is useful for pointer types which wrap `NonNull`.
* Implementing `PointerLike` for `isize` is just for completeness; I have no use cases in mind, but I cannot think of any reason not to do this.
* Tracking issue: #102425
`@rustbot` label +F-dyn_star
(there is no label or tracking issue for F-pointer_like_trait)
Implementing `PointerLike` for `UnsafeCell` enables the possibility of
interior mutable `dyn*` values. Since this means potentially exercising
new codegen behavior, I added a test for it in `tests/ui/dyn-star/cell.rs`.
Also updated UI tests to account for the `isize` implementation changing
error messages.
Delete `Rvalue::Len` 🎉
Everything's moved to `PtrMetadata`, so we can get rid of the `Len` variant now.
~~Depends on #134326, so draft until that lands~~ Ready!
r? mir
Asserts the maximum value that can be returned from `Vec::len`
Currently, casting `Vec<i32>` to `Vec<u32>` takes O(1) time:
```rust
// See <https://godbolt.org/z/hxq3hnYKG> for assembly output.
pub fn cast(vec: Vec<i32>) -> Vec<u32> {
vec.into_iter().map(|e| e as _).collect()
}
```
But the generated assembly is not the same as the identity function, which prevents us from casting `Vec<Vec<i32>>` to `Vec<Vec<u32>>` within O(1) time:
```rust
// See <https://godbolt.org/z/7n48bxd9f> for assembly output.
pub fn cast(vec: Vec<Vec<i32>>) -> Vec<Vec<u32>> {
vec.into_iter()
.map(|e| e.into_iter().map(|e| e as _).collect())
.collect()
}
```
This change tries to fix the problem. You can see the comparison here: <https://godbolt.org/z/jdManrKvx>.
Use `PtrMetadata` instead of `Len` in slice drop shims
I tried to do a bigger change in #134297 which didn't work, so here's the part I really wanted: Removing another use of `Len`, in favour of `PtrMetadata`.
Split into two commits where the first just adds a test, so you can look at the second commit to see how the drop shim for an array changes with this PR.
Reusing the same reviewer from the last one:
r? BoxyUwU
Rollup of 6 pull requests
Successful merges:
- #134364 (Use E0665 for missing `#[default]` on enum and update doc)
- #134601 (Support pretty-printing `dyn*` trait objects)
- #134603 (Explain why a type is not eligible for `impl PointerLike`.)
- #134618 (coroutine_clone: add comments)
- #134630 (Use `&raw` for `ptr` primitive docs)
- #134637 (Flatten effects directory now that it doesn't really test anything specific)
r? `@ghost`
`@rustbot` modify labels: rollup
Flatten effects directory now that it doesn't really test anything specific
These are just const trait tests now, after all.
There was one naming conflict between the aux-build `tests/ui/traits/const-traits/effects/auxiliary/cross-crate.rs` and `tests/ui/traits/const-traits/auxiliary/cross-crate.rs`. The former didn't really test anything useful since we no longer have an effect param, so I removed the test that owned it: `tests/ui/traits/const-traits/effects/no-explicit-const-params-cross-crate.rs`.
r? project-const-traits
coroutine_clone: add comments
I was very surprised to learn that coroutines can be cloned. This has non-trivial semantic consequences that I do not think have been considered. Lucky enough, it's still unstable. Let's add some comments and pointers so we hopefully become aware when a MIR opt actually is in conflict with this.
Cc `@rust-lang/wg-mir-opt`
Explain why a type is not eligible for `impl PointerLike`.
The rules were baffling when I ran in to them trying to add some impls (to `std`, not my own code, as it happens), so I made the compiler explain them to me.
The logic of the successful cases is unchanged, but I did rearrange it to reverse the order of the primitive and `Adt` cases; this makes producing the errors easier. I'm still not very familiar with `rustc` internals, so let me know if there's a better way to do any of this.
This also adds test coverage for which impls are accepted or rejected, which I didn't see any of already.
The PR template tells me I should consider mentioning a tracking issue, but there isn't one for `pointer_like_trait`, so I'll mention `dyn_star`: #102425
Use E0665 for missing `#[default]` on enum and update doc
The docs for E0665 when doing `#[derive(Default]` on an `enum` previously didn't mention `#[default]` at all, or made a distinction between unit variants, that can be annotated, and tuple or struct variants, which cannot.
E0665 was not being emitted, we now use it for the same error it belonged to before.
```
error[E0665]: `#[derive(Default)]` on enum with no `#[default]`
--> $DIR/macros-nonfatal-errors.rs:42:10
|
LL | #[derive(Default)]
| ^^^^^^^
LL | / enum NoDeclaredDefault {
LL | | Foo,
LL | | Bar,
LL | | }
| |_- this enum needs a unit variant marked with `#[default]`
|
= note: this error originates in the derive macro `Default` (in Nightly builds, run with -Z macro-backtrace for more info)
help: make this unit variant default by placing `#[default]` on it
|
LL | #[default] Foo,
| ++++++++++
help: make this unit variant default by placing `#[default]` on it
|
LL | #[default] Bar,
| ++++++++++
```
Optimize `is_ascii` for `str` and `[u8]` further
Replace the existing optimized function with one that enables auto-vectorization.
This is especially beneficial on x86-64 as `pmovmskb` can be emitted with careful structuring of the code. The instruction can detect non-ASCII characters one vector register width at a time instead of the current `usize` at a time check.
The resulting implementation is completely safe.
`case00_libcore` is the current implementation, `case04_while_loop` is this PR.
```
benchmarks:
ascii::is_ascii_slice::long::case00_libcore 22.25/iter +/- 1.09
ascii::is_ascii_slice::long::case04_while_loop 6.78/iter +/- 0.92
ascii::is_ascii_slice::medium::case00_libcore 2.81/iter +/- 0.39
ascii::is_ascii_slice::medium::case04_while_loop 1.56/iter +/- 0.78
ascii::is_ascii_slice::short::case00_libcore 5.55/iter +/- 0.85
ascii::is_ascii_slice::short::case04_while_loop 3.75/iter +/- 0.22
ascii::is_ascii_slice::unaligned_both_long::case00_libcore 26.59/iter +/- 0.66
ascii::is_ascii_slice::unaligned_both_long::case04_while_loop 5.78/iter +/- 0.16
ascii::is_ascii_slice::unaligned_both_medium::case00_libcore 2.97/iter +/- 0.32
ascii::is_ascii_slice::unaligned_both_medium::case04_while_loop 2.41/iter +/- 0.10
ascii::is_ascii_slice::unaligned_head_long::case00_libcore 23.71/iter +/- 0.79
ascii::is_ascii_slice::unaligned_head_long::case04_while_loop 7.83/iter +/- 1.31
ascii::is_ascii_slice::unaligned_head_medium::case00_libcore 3.69/iter +/- 0.54
ascii::is_ascii_slice::unaligned_head_medium::case04_while_loop 7.05/iter +/- 0.32
ascii::is_ascii_slice::unaligned_tail_long::case00_libcore 24.44/iter +/- 1.41
ascii::is_ascii_slice::unaligned_tail_long::case04_while_loop 5.12/iter +/- 0.18
ascii::is_ascii_slice::unaligned_tail_medium::case00_libcore 3.24/iter +/- 0.40
ascii::is_ascii_slice::unaligned_tail_medium::case04_while_loop 2.86/iter +/- 0.14
```
`unaligned_head_medium` is the main regression in the benchmarks. It is a 32 byte string being sliced `bytes[1..]`.
The first commit can be used to run the benchmarks against the current core implementation.
Previous implementation was done in #74066
---
Two potential drawbacks of this implementation are that it increases instruction count and may regress other platforms/architectures. The benches here may also be too artificial to glean much insight from.
https://rust.godbolt.org/z/G9znGfY36