Remove `DefId` from `EarlyParamRegion`
Currently we represent usages of `Region` parameters via the `ReEarlyParam` or `ReLateParam` variants. The `ReEarlyParam` is effectively equivalent to `TyKind::Param` and `ConstKind::Param` (i.e. it stores a `Symbol` and a `u32` index) however it also stores a `DefId` for the definition of the lifetime parameter.
This was used in roughly two places:
- Borrowck diagnostics instead of threading the appropriate `body_id` down to relevant locations. Interestingly there were already some places that had to pass down a `DefId` manually.
- Some opaque type checking logic was using the `DefId` field to track captured lifetimes
I've split this PR up into a commit for generate rote changes to diagnostics code to pass around a `DefId` manually everywhere, and another commit for the opaque type related changes which likely require more careful review as they might change the semantics of lints/errors.
Instead of manually passing the `DefId` around everywhere I previously tried to bundle it in with `TypeErrCtxt` but ran into issues with some call sites of `infcx.err_ctxt` being unable to provide a `DefId`, particularly places involved with trait solving and normalization. It might be worth investigating adding some new wrapper type to pass this around everywhere but I think this might be acceptable for now.
This pr also has the effect of reducing the size of `EarlyParamRegion` from 16 bytes -> 8 bytes. I wouldn't expect this to have any direct performance improvement however, other variants of `RegionKind` over `8` bytes are all because they contain a `BoundRegionKind` which is, as far as I know, mostly there for diagnostics. If we're ever able to remove this it would shrink the `RegionKind` type from `24` bytes to `12` (and with clever bit packing we might be able to get it to `8` bytes). I am curious what the performance impact would be of removing interning of `Region`'s if we ever manage to shrink `RegionKind` that much.
Sidenote: by removing the `DefId` the `Debug` output for `Region` has gotten significantly nicer. As an example see this opaque type debug print before vs after this PR:
`Opaque(DefId(0:13 ~ impl_trait_captures[aeb9]::foo::{opaque#0}), [DefId(0:9 ~ impl_trait_captures[aeb9]::foo::'a)_'a/#0, T, DefId(0:9 ~ impl_trait_captures[aeb9]::foo::'a)_'a/#0])`
`Opaque(DefId(0:13 ~ impl_trait_captures[aeb9]::foo::{opaque#0}), ['a/#0, T, 'a/#0])`
r? `@compiler-errors` (I would like someone who understands the opaque type setup to atleast review the type system commit, but the rest is likely reviewable by anyone)
```
error[E0382]: use of moved value: `t`
--> $DIR/use_of_moved_value_copy_suggestions.rs:7:9
|
LL | fn duplicate_t<T>(t: T) -> (T, T) {
| - move occurs because `t` has type `T`, which does not implement the `Copy` trait
...
LL | (t, t)
| - ^ value used here after move
| |
| value moved here
|
help: if `T` implemented `Clone`, you could clone the value
--> $DIR/use_of_moved_value_copy_suggestions.rs:4:16
|
LL | fn duplicate_t<T>(t: T) -> (T, T) {
| ^ consider constraining this type parameter with `Clone`
...
LL | (t, t)
| - you could clone this value
help: consider restricting type parameter `T`
|
LL | fn duplicate_t<T: Copy>(t: T) -> (T, T) {
| ++++++
```
The `help` is new. On ADTs, we also extend the output with span labels:
```
error[E0507]: cannot move out of static item `FOO`
--> $DIR/issue-17718-static-move.rs:6:14
|
LL | let _a = FOO;
| ^^^ move occurs because `FOO` has type `Foo`, which does not implement the `Copy` trait
|
note: if `Foo` implemented `Clone`, you could clone the value
--> $DIR/issue-17718-static-move.rs:1:1
|
LL | struct Foo;
| ^^^^^^^^^^ consider implementing `Clone` for this type
...
LL | let _a = FOO;
| --- you could clone this value
help: consider borrowing here
|
LL | let _a = &FOO;
| +
```
Start pointing to where bindings were declared when they are captured in closures:
```
error[E0597]: `x` does not live long enough
--> $DIR/suggest-return-closure.rs:23:9
|
LL | let x = String::new();
| - binding `x` declared here
...
LL | |c| {
| --- value captured here
LL | x.push(c);
| ^ borrowed value does not live long enough
...
LL | }
| -- borrow later used here
| |
| `x` dropped here while still borrowed
```
Suggest cloning in more cases involving closures:
```
error[E0507]: cannot move out of `foo` in pattern guard
--> $DIR/issue-27282-move-ref-mut-into-guard.rs:11:19
|
LL | if { (|| { let mut bar = foo; bar.take() })(); false } => {},
| ^^ --- move occurs because `foo` has type `&mut Option<&i32>`, which does not implement the `Copy` trait
| |
| `foo` is moved here
|
= note: variables bound in patterns cannot be moved from until after the end of the pattern guard
help: consider cloning the value if the performance cost is acceptable
|
LL | if { (|| { let mut bar = foo.clone(); bar.take() })(); false } => {},
| ++++++++
```
Detect borrow checker errors where `.clone()` would be an appropriate user action
When a value is moved twice, suggest cloning the earlier move:
```
error[E0509]: cannot move out of type `U2`, which implements the `Drop` trait
--> $DIR/union-move.rs:49:18
|
LL | move_out(x.f1_nocopy);
| ^^^^^^^^^^^
| |
| cannot move out of here
| move occurs because `x.f1_nocopy` has type `ManuallyDrop<RefCell<i32>>`, which does not implement the `Copy` trait
|
help: consider cloning the value if the performance cost is acceptable
|
LL | move_out(x.f1_nocopy.clone());
| ++++++++
```
When a value is borrowed by an `fn` call, consider if cloning the result of the call would be reasonable, and suggest cloning that, instead of the argument:
```
error[E0505]: cannot move out of `a` because it is borrowed
--> $DIR/variance-issue-20533.rs:53:14
|
LL | let a = AffineU32(1);
| - binding `a` declared here
LL | let x = bat(&a);
| -- borrow of `a` occurs here
LL | drop(a);
| ^ move out of `a` occurs here
LL | drop(x);
| - borrow later used here
|
help: consider cloning the value if the performance cost is acceptable
|
LL | let x = bat(&a).clone();
| ++++++++
```
otherwise, suggest cloning the argument:
```
error[E0505]: cannot move out of `a` because it is borrowed
--> $DIR/variance-issue-20533.rs:59:14
|
LL | let a = ClonableAffineU32(1);
| - binding `a` declared here
LL | let x = foo(&a);
| -- borrow of `a` occurs here
LL | drop(a);
| ^ move out of `a` occurs here
LL | drop(x);
| - borrow later used here
|
help: consider cloning the value if the performance cost is acceptable
|
LL - let x = foo(&a);
LL + let x = foo(a.clone());
|
```
This suggestion doesn't attempt to square out the types between what's cloned and what the `fn` expects, to allow the user to make a determination on whether to change the `fn` call or `fn` definition themselves.
Special case move errors caused by `FnOnce`:
```
error[E0382]: use of moved value: `blk`
--> $DIR/once-cant-call-twice-on-heap.rs:8:5
|
LL | fn foo<F:FnOnce()>(blk: F) {
| --- move occurs because `blk` has type `F`, which does not implement the `Copy` trait
LL | blk();
| ----- `blk` moved due to this call
LL | blk();
| ^^^ value used here after move
|
note: `FnOnce` closures can only be called once
--> $DIR/once-cant-call-twice-on-heap.rs:6:10
|
LL | fn foo<F:FnOnce()>(blk: F) {
| ^^^^^^^^ `F` is made to be an `FnOnce` closure here
LL | blk();
| ----- this value implements `FnOnce`, which causes it to be moved when called
```
Account for redundant `.clone()` calls in resulting suggestions:
```
error[E0507]: cannot move out of dereference of `S`
--> $DIR/needs-clone-through-deref.rs:15:18
|
LL | for _ in self.clone().into_iter() {}
| ^^^^^^^^^^^^ ----------- value moved due to this method call
| |
| move occurs because value has type `Vec<usize>`, which does not implement the `Copy` trait
|
note: `into_iter` takes ownership of the receiver `self`, which moves value
--> $SRC_DIR/core/src/iter/traits/collect.rs:LL:COL
help: you can `clone` the value and consume it, but this might not be your desired behavior
|
LL | for _ in <Vec<usize> as Clone>::clone(&self).into_iter() {}
| ++++++++++++++++++++++++++++++ ~
```
We use the presence of `&mut` values in a move error as a proxy for the user caring about side effects, so we don't emit a clone suggestion in that case:
```
error[E0505]: cannot move out of `s` because it is borrowed
--> $DIR/borrowck-overloaded-index-move-index.rs:53:7
|
LL | let mut s = "hello".to_string();
| ----- binding `s` declared here
LL | let rs = &mut s;
| ------ borrow of `s` occurs here
...
LL | f[s] = 10;
| ^ move out of `s` occurs here
...
LL | use_mut(rs);
| -- borrow later used here
```
We properly account for `foo += foo;` errors where we *don't* suggest `foo.clone() += foo;`, instead suggesting `foo += foo.clone();`.
---
Each commit can be reviewed in isolation. There are some "cleanup" commits, but kept them separate in order to show *why* specific changes were being made, and their effect on tests' output.
Fix#49693, CC #64167.
```
error[E0507]: cannot move out of `val`, a captured variable in an `FnMut` closure
--> $DIR/issue-87456-point-to-closure.rs:10:28
|
LL | let val = String::new();
| --- captured outer variable
LL |
LL | take_mut(|| {
| -- captured by this `FnMut` closure
LL |
LL | let _foo: String = val;
| ^^^ move occurs because `val` has type `String`, which does not implement the `Copy` trait
|
help: consider borrowing here
|
LL | let _foo: String = &val;
| +
help: consider cloning the value if the performance cost is acceptable
|
LL | let _foo: String = val.clone();
| ++++++++
```
```
error[E0507]: cannot move out of `*x` which is behind a shared reference
--> $DIR/borrowck-fn-in-const-a.rs:6:16
|
LL | return *x
| ^^ move occurs because `*x` has type `String`, which does not implement the `Copy` trait
|
help: consider cloning the value if the performance cost is acceptable
|
LL - return *x
LL + return x.clone()
|
```
Tweak value suggestions in `borrowck` and `hir_analysis`
Unify the output of `suggest_assign_value` and `ty_kind_suggestion`.
Ideally we'd make these a single function, but doing so would likely require modify the crate dependency tree.
Unify the output of `suggest_assign_value` and `ty_kind_suggestion`.
Ideally we'd make these a single function, but doing so would likely require modify the crate dependency tree.
Split an item bounds and an item's super predicates
This is the moral equivalent of #107614, but instead for predicates this applies to **item bounds**. This PR splits out the item bounds (i.e. *all* predicates that are assumed to hold for the alias) from the item *super predicates*, which are the subset of item bounds which share the same self type as the alias.
## Why?
Much like #107614, there are places in the compiler where we *only* care about super-predicates, and considering predicates that possibly don't have anything to do with the alias is problematic. This includes things like closure signature inference (which is at its core searching for `Self: Fn(..)` style bounds), but also lints like `#[must_use]`, error reporting for aliases, computing type outlives predicates.
Even in cases where considering all of the `item_bounds` doesn't lead to bugs, unnecessarily considering irrelevant bounds does lead to a regression (#121121) due to doing extra work in the solver.
## Example 1 - Trait Aliases
This is best explored via an example:
```
type TAIT<T> = impl TraitAlias<T>;
trait TraitAlias<T> = A + B where T: C;
```
The item bounds list for `Tait<T>` will include:
* `Tait<T>: A`
* `Tait<T>: B`
* `T: C`
While `item_super_predicates` query will include just the first two predicates.
Side-note: You may wonder why `T: C` is included in the item bounds for `TAIT`? This is because when we elaborate `TraitAlias<T>`, we will also elaborate all the predicates on the trait.
## Example 2 - Associated Type Bounds
```
type TAIT<T> = impl Iterator<Item: A>;
```
The `item_bounds` list for `TAIT<T>` will include:
* `Tait<T>: Iterator`
* `<Tait<T> as Iterator>::Item: A`
But the `item_super_predicates` will just include the first bound, since that's the only bound that is relevant to the *alias* itself.
## So what
This leads to some diagnostics duplication just like #107614, but none of it will be user-facing. We only see it in the UI test suite because we explicitly disable diagnostic deduplication.
Regarding naming, I went with `super_predicates` kind of arbitrarily; this can easily be changed, but I'd consider better names as long as we don't block this PR in perpetuity.
unify query canonicalization mode
Exclude from canonicalization only the static lifetimes that appear in the param env because of #118965 . Any other occurrence can be canonicalized safely AFAICT.
r? `@lcnr`