Wrap the whole LocalInfo in ClearCrossCrate.
MIR contains a lot of information about locals. The primary purpose of this information is the quality of borrowck diagnostics.
This PR aims to drop this information after MIR analyses are finished, ie. starting from post-cleanup runtime MIR.
This makes pin docs a little bit less jargon-y and easier to read, by
* splitting up the sentences
* making them less interrupted by punctuation
* turning the footnotes into paragraphs, as they contain useful information
that shouldn't be hidden in footnotes. Footnotes also interrupt the read flow.
* other improvements and simplifications
Tree borrows
This PR implements the experimental Tree Borrows (TB) rules for tracking reference aliasing, as an optional alternative to Stacked Borrows (SB).
SB and TB are mutually exclusive. Using `-Zmiri-tree-borrows` replaces every invocation of SB with the equivalent TB procedure.
A detailed explanation of the TB rules is currently under review, you can find the latest version [here [work in progress]](https://github.com/Vanille-N/tree-borrows/blob/master/model/treebor.pdf).
This PR does NOT yet include
- enough `fail` tests for TB (although TB is less reliant than SB on `fail` tests to check that the implementation matches the design due to `pass` tests being more strict)
- good diagnostics for TB violations
Flatten/inline format_args!() and (string and int) literal arguments into format_args!()
Implements https://github.com/rust-lang/rust/issues/78356
Gated behind `-Zflatten-format-args=yes`.
Part of #99012
This change inlines string literals, integer literals and nested format_args!() into format_args!() during ast lowering, making all of the following pairs result in equivalent hir:
```rust
println!("Hello, {}!", "World");
println!("Hello, World!");
```
```rust
println!("[info] {}", format_args!("error"));
println!("[info] error");
```
```rust
println!("[{}] {}", status, format_args!("error: {}", msg));
println!("[{}] error: {}", status, msg);
```
```rust
println!("{} + {} = {}", 1, 2, 1 + 2);
println!("1 + 2 = {}", 1 + 2);
```
And so on.
This is useful for macros. E.g. a `log::info!()` macro could just pass the tokens from the user directly into a `format_args!()` that gets efficiently flattened/inlined into a `format_args!("info: {}")`.
It also means that `dbg!(x)` will have its file, line, and expression name inlined:
```rust
eprintln!("[{}:{}] {} = {:#?}", file!(), line!(), stringify!(x), x); // before
eprintln!("[example.rs:1] x = {:#?}", x); // after
```
Which can be nice in some cases, but also means a lot more unique static strings than before if dbg!() is used a lot.