Only compute `specializes` query if (min)specialization is enabled in the crate of the specializing impl
Fixes (after backport) https://github.com/rust-lang/rust/issues/125197
### What
https://github.com/rust-lang/rust/pull/122791 makes it so that inductive cycles are no longer hard errors. That means that when we are testing, for example, whether these impls overlap:
```rust
impl PartialEq<Self> for AnyId {
fn eq(&self, _: &Self) -> bool {
todo!()
}
}
impl<T: Identifier> PartialEq<T> for AnyId {
fn eq(&self, _: &T) -> bool {
todo!()
}
}
```
...given...
```rust
pub trait Identifier: Display + 'static {}
impl<T> Identifier for T where T: PartialEq + Display + 'static {}
```
Then we try to see if the second impl holds given `T = AnyId`. That requires `AnyId: Identifier`, which requires that `AnyId: PartialEq`, which is satisfied by these two impl candidates... The `PartialEq<T>` impl is a cycle, and we used to winnow it when we used to treat inductive cycles as errors.
However, now that we don't winnow it, this means that we *now* try calling `candidate_should_be_dropped_in_favor_of`, which tries to check whether one of the impls specializes the other: the `specializes` query. In that query, we currently bail early if the impl is local.
However, in a foreign crate, we try to compute if the two impls specialize each other by doing trait solving. This may itself lead to the same situation where we call `specializes`, which will lead to a query cycle.
### How does this fix the problem
We now record whether specialization is enabled in foreign crates, and extend this early-return behavior to foreign impls too. This means that we can only encounter these cycles if we truly have a specializing impl from a crate with specialization enabled.
-----
r? `@oli-obk` or `@lcnr`
Detect pub structs never constructed and unused associated constants
<!--
If this PR is related to an unstable feature or an otherwise tracked effort,
please link to the relevant tracking issue here. If you don't know of a related
tracking issue or there are none, feel free to ignore this.
This PR will get automatically assigned to a reviewer. In case you would like
a specific user to review your work, you can assign it to them by using
r? <reviewer name>
-->
Lints never constructed public structs.
If we don't provide public methods to construct public structs with private fields, and don't construct them in the local crate. They would be never constructed. So that we can detect such public structs.
---
Update:
Also lints unused associated constants in traits.
Lazily normalize inside trait ref during orphan check & consider ty params in rigid alias types to be uncovered
Fixes#99554, fixesrust-lang/types-team#104.
Fixes#114061.
Supersedes #100555.
Tracking issue for the future compatibility lint: #124559.
r? lcnr
Change leak check and suspicious auto trait lint warning messages
The leak check lint message "this was previously accepted by the compiler but is being phased out; it will become a hard error in a future release!" is misleading as some cases may not be phased out and could end being accepted. This is under discussion still.
The suspicious auto trait lint the change in behavior already happened, so the new message is probably more accurate.
r? `@lcnr`
Closes#93367
deduplicate infer var instantiation
Having 3 separate implementations of one of the most subtle parts of our type system is not a good strategy if we want to maintain a sound type system ✨ while working on this I already found some subtle bugs in the existing code, so that's awesome 🎉 cc #121159
This was necessary as I am not confident in my nll changes in #119106, so I am first cleaning this up in a separate PR.
r? `@BoxyUwU`
Stop bailing out from compilation just because there were incoherent traits
fixes#120343
but also has a lot of "type annotations needed" fallout. Some are fixed in the second commit.
detects redundant imports that can be eliminated.
for #117772 :
In order to facilitate review and modification, split the checking code and
removing redundant imports code into two PR.