On later stages, the feature is already stable.
Result of running:
rg -l "feature.let_else" compiler/ src/librustdoc/ library/ | xargs sed -s -i "s#\\[feature.let_else#\\[cfg_attr\\(bootstrap, feature\\(let_else\\)#"
This PR will fix some typos detected by [typos].
I only picked the ones I was sure were spelling errors to fix, mostly in
the comments.
[typos]: https://github.com/crate-ci/typos
Rollup of 9 pull requests
Successful merges:
- #95376 (Add `vec::Drain{,Filter}::keep_rest`)
- #100092 (Fall back when relating two opaques by substs in MIR typeck)
- #101019 (Suggest returning closure as `impl Fn`)
- #101022 (Erase late bound regions before comparing types in `suggest_dereferences`)
- #101101 (interpret: make read-pointer-as-bytes a CTFE-only error with extra information)
- #101123 (Remove `register_attr` feature)
- #101175 (Don't --bless in pre-push hook)
- #101176 (rustdoc: remove unused CSS selectors for `.table-display`)
- #101180 (Add another MaybeUninit array test with const)
Failed merges:
r? `@ghost`
`@rustbot` modify labels: rollup
Remove migrate borrowck mode
Closes#58781Closes#43234
# Stabilization proposal
This PR proposes the stabilization of `#![feature(nll)]` and the removal of `-Z borrowck`. Current borrow checking behavior of item bodies is currently done by first infering regions *lexically* and reporting any errors during HIR type checking. If there *are* any errors, then MIR borrowck (NLL) never occurs. If there *aren't* any errors, then MIR borrowck happens and any errors there would be reported. This PR removes the lexical region check of item bodies entirely and only uses MIR borrowck. Because MIR borrowck could never *not* be run for a compiled program, this should not break any programs. It does, however, change diagnostics significantly and allows a slightly larger set of programs to compile.
Tracking issue: #43234
RFC: https://github.com/rust-lang/rfcs/blob/master/text/2094-nll.md
Version: 1.63 (2022-06-30 => beta, 2022-08-11 => stable).
## Motivation
Over time, the Rust borrow checker has become "smarter" and thus allowed more programs to compile. There have been three different implementations: AST borrowck, MIR borrowck, and polonius (well, in progress). Additionally, there is the "lexical region resolver", which (roughly) solves the constraints generated through HIR typeck. It is not a full borrow checker, but does emit some errors.
The AST borrowck was the original implementation of the borrow checker and was part of the initially stabilized Rust 1.0. In mid 2017, work began to implement the current MIR borrow checker and that effort ompleted by the end of 2017, for the most part. During 2018, efforts were made to migrate away from the AST borrow checker to the MIR borrow checker - eventually culminating into "migrate" mode - where HIR typeck with lexical region resolving following by MIR borrow checking - being active by default in the 2018 edition.
In early 2019, migrate mode was turned on by default in the 2015 edition as well, but with MIR borrowck errors emitted as warnings. By late 2019, these warnings were upgraded to full errors. This was followed by the complete removal of the AST borrow checker.
In the period since, various errors emitted by the MIR borrow checker have been improved to the point that they are mostly the same or better than those emitted by the lexical region resolver.
While there do remain some degradations in errors (tracked under the [NLL-diagnostics tag](https://github.com/rust-lang/rust/issues?q=is%3Aopen+is%3Aissue+label%3ANLL-diagnostics), those are sufficiently small and rare enough that increased flexibility of MIR borrow check-only is now a worthwhile tradeoff.
## What is stabilized
As said previously, this does not fundamentally change the landscape of accepted programs. However, there are a [few](https://github.com/rust-lang/rust/issues?q=is%3Aopen+is%3Aissue+label%3ANLL-fixed-by-NLL) cases where programs can compile under `feature(nll)`, but not otherwise.
There are two notable patterns that are "fixed" by this stabilization. First, the `scoped_threads` feature, which is a continutation of a pre-1.0 API, can sometimes emit a [weird lifetime error](https://github.com/rust-lang/rust/issues/95527) without NLL. Second, actually seen in the standard library. In the `Extend` impl for `HashMap`, there is an implied bound of `K: 'a` that is available with NLL on but not without - this is utilized in the impl.
As mentioned before, there are a large number of diagnostic differences. Most of them are better, but some are worse. None are serious or happen often enough to need to block this PR. The biggest change is the loss of error code for a number of lifetime errors in favor of more general "lifetime may not live long enough" error. While this may *seem* bad, the former error codes were just attempts to somewhat-arbitrarily bin together lifetime errors of the same type; however, on paper, they end up being roughly the same with roughly the same kinds of solutions.
## What isn't stabilized
This PR does not completely remove the lexical region resolver. In the future, it may be possible to remove that (while still keeping HIR typeck) or to remove it together with HIR typeck.
## Tests
Many test outputs get updated by this PR. However, there are number of tests specifically geared towards NLL under `src/test/ui/nll`
## History
* On 2017-07-14, [tracking issue opened](https://github.com/rust-lang/rust/issues/43234)
* On 2017-07-20, [initial empty MIR pass added](https://github.com/rust-lang/rust/pull/43271)
* On 2017-08-29, [RFC opened](https://github.com/rust-lang/rfcs/pull/2094)
* On 2017-11-16, [Integrate MIR type-checker with NLL](https://github.com/rust-lang/rust/pull/45825)
* On 2017-12-20, [NLL feature complete](https://github.com/rust-lang/rust/pull/46862)
* On 2018-07-07, [Don't run AST borrowck on mir mode](https://github.com/rust-lang/rust/pull/52083)
* On 2018-07-27, [Add migrate mode](https://github.com/rust-lang/rust/pull/52681)
* On 2019-04-22, [Enable migrate mode on 2015 edition](https://github.com/rust-lang/rust/pull/59114)
* On 2019-08-26, [Don't downgrade errors on 2015 edition](https://github.com/rust-lang/rust/pull/64221)
* On 2019-08-27, [Remove AST borrowck](https://github.com/rust-lang/rust/pull/64790)
Implement a lint to warn about unused macro rules
This implements a new lint to warn about unused macro rules (arms/matchers), similar to the `unused_macros` lint added by #41907 that warns about entire macros.
```rust
macro_rules! unused_empty {
(hello) => { println!("Hello, world!") };
() => { println!("empty") }; //~ ERROR: 1st rule of macro `unused_empty` is never used
}
fn main() {
unused_empty!(hello);
}
```
Builds upon #96149 and #96156.
Fixes#73576
When we don't find an item we search all of them for an appropriate
import and suggest `use`ing it. This is sometimes done for expressions
that have paths with more than one segment. We now also suggest changing
that path to work with the `use`.
Fix#95413
rustc: Panic by default in `DefIdTree::parent`
Only crate root def-ids don't have a parent, and in majority of cases the argument of `DefIdTree::parent` cannot be a crate root.
So we now panic by default in `parent` and introduce a new non-panicing function `opt_parent` for cases where the argument can be a crate root.
Same applies to `local_parent`/`opt_local_parent`.
Only crate root def-ids don't have a parent, and in majority of cases the argument of `DefIdTree::parent` cannot be a crate root.
So we now panic by default in `parent` and introduce a new non-panicing function `opt_parent` for cases where the argument can be a crate root.
Same applies to `local_parent`/`opt_local_parent`.
rustdoc: Resolve doc links referring to `macro_rules` items
cc https://github.com/rust-lang/rust/issues/81633
UPD: the fallback to considering *all* `macro_rules` in the crate for unresolved names is not removed in this PR, it will be removed separately and will be run through crater.
Perform lifetime resolution on the AST for lowering
Lifetime resolution is currently implemented several times. Once during lowering in order to introduce in-band lifetimes, and once in the resolve_lifetimes query. However, due to the global nature of lifetime resolution and how it interferes with hygiene, it is better suited on the AST.
This PR implements a first draft of lifetime resolution on the AST. For now, we specifically target named lifetimes and everything we need to remove lifetime resolution from lowering. Some diagnostics have already been ported, and sometimes made more precise using available hygiene information. Follow-up PRs will address in particular the resolution of anonymous lifetimes on the AST.
We reuse the rib design of the current resolution framework. Specific `LifetimeRib` and `LifetimeRibKind` types are introduced. The most important variant is `LifetimeRibKind::Generics`, which happens each time we encounter something which may introduce generic lifetime parameters. It can be an item or a `for<...>` binder. The `LifetimeBinderKind` specifies how this rib behaves with respect to in-band lifetimes.
r? `@petrochenkov`
Stop using CRATE_DEF_INDEX outside of metadata encoding.
`CRATE_DEF_ID` and `CrateNum::as_def_id` are almost always what we want. We should not manipulate raw `DefIndex` outside of metadata encoding.
rustdoc: Fix resolution of `crate`-relative paths in doc links
Resolve `crate::foo` paths transparently to rustdoc, so their resolution no longer affects diagnostics and modules used for determining traits in scope.
The proper solution is to account for the current `module_id`/`parent_scope` in `fn resolve_crate_root`, but it's a slightly larger compiler changes. This PR moves the code closer to it, but keeps it rustdoc-specific.
Fixes https://github.com/rust-lang/rust/issues/78696
Fixes https://github.com/rust-lang/rust/issues/94924
Also remove a redundant parameter from `fn resolve_path(_with_ribs)`, `crate_lint: CrateLint` is a more detailed version of `record_used: bool` with `CrateLint::No` meaning `false` and anything else meaning `true`.
More robust fallback for `use` suggestion
Our old way to suggest where to add `use`s would first look for pre-existing `use`s in the relevant crate/module, and if there are *no* uses, it would fallback on trying to use another item as the basis for the suggestion.
But this was fragile, as illustrated in issue #87613
This PR instead identifies span of the first token after any inner attributes, and uses *that* as the fallback for the `use` suggestion.
Fix#87613
then we just suggest the first legal position where you could inject a use.
To do this, I added `inject_use_span` field to `ModSpans`, and populate it in
parser (it is the span of the first token found after inner attributes, if any).
Then I rewrote the use-suggestion code to utilize it, and threw out some stuff
that is now unnecessary with this in place. (I think the result is easier to
understand.)
Then I added a test of issue 87613.
rustc_errors: let `DiagnosticBuilder::emit` return a "guarantee of emission".
That is, `DiagnosticBuilder` is now generic over the return type of `.emit()`, so we'll now have:
* `DiagnosticBuilder<ErrorReported>` for error (incl. fatal/bug) diagnostics
* can only be created via a `const L: Level`-generic constructor, that limits allowed variants via a `where` clause, so not even `rustc_errors` can accidentally bypass this limitation
* asserts `diagnostic.is_error()` on emission, just in case the construction restriction was bypassed (e.g. by replacing the whole `Diagnostic` inside `DiagnosticBuilder`)
* `.emit()` returns `ErrorReported`, as a "proof" token that `.emit()` was called
(though note that this isn't a real guarantee until after completing the work on
#69426)
* `DiagnosticBuilder<()>` for everything else (warnings, notes, etc.)
* can also be obtained from other `DiagnosticBuilder`s by calling `.forget_guarantee()`
This PR is a companion to other ongoing work, namely:
* #69426
and it's ongoing implementation:
#93222
the API changes in this PR are needed to get statically-checked "only errors produce `ErrorReported` from `.emit()`", but doesn't itself provide any really strong guarantees without those other `ErrorReported` changes
* #93244
would make the choices of API changes (esp. naming) in this PR fit better overall
In order to be able to let `.emit()` return anything trustable, several changes had to be made:
* `Diagnostic`'s `level` field is now private to `rustc_errors`, to disallow arbitrary "downgrade"s from "some kind of error" to "warning" (or anything else that doesn't cause compilation to fail)
* it's still possible to replace the whole `Diagnostic` inside the `DiagnosticBuilder`, sadly, that's harder to fix, but it's unlikely enough that we can paper over it with asserts on `.emit()`
* `.cancel()` now consumes `DiagnosticBuilder`, preventing `.emit()` calls on a cancelled diagnostic
* it's also now done internally, through `DiagnosticBuilder`-private state, instead of having a `Level::Cancelled` variant that can be read (or worse, written) by the user
* this removes a hazard of calling `.cancel()` on an error then continuing to attach details to it, and even expect to be able to `.emit()` it
* warnings were switched to *only* `can_emit_warnings` on emission (instead of pre-cancelling early)
* `struct_dummy` was removed (as it relied on a pre-`Cancelled` `Diagnostic`)
* since `.emit()` doesn't consume the `DiagnosticBuilder` <sub>(I tried and gave up, it's much more work than this PR)</sub>,
we have to make `.emit()` idempotent wrt the guarantees it returns
* thankfully, `err.emit(); err.emit();` can return `ErrorReported` both times, as the second `.emit()` call has no side-effects *only* because the first one did do the appropriate emission
* `&mut Diagnostic` is now used in a lot of function signatures, which used to take `&mut DiagnosticBuilder` (in the interest of not having to make those functions generic)
* the APIs were already mostly identical, allowing for low-effort porting to this new setup
* only some of the suggestion methods needed some rework, to have the extra `DiagnosticBuilder` functionality on the `Diagnostic` methods themselves (that change is also present in #93259)
* `.emit()`/`.cancel()` aren't available, but IMO calling them from an "error decorator/annotator" function isn't a good practice, and can lead to strange behavior (from the caller's perspective)
* `.downgrade_to_delayed_bug()` was added, letting you convert any `.is_error()` diagnostic into a `delay_span_bug` one (which works because in both cases the guarantees available are the same)
This PR should ideally be reviewed commit-by-commit, since there is a lot of fallout in each.
r? `@estebank` cc `@Manishearth` `@nikomatsakis` `@mark-i-m`
In particular, there's now more protection against incorrect usage,
because you can only create one via `Interned::new_unchecked`, which
makes it more obvious that you must be careful.
There are also some tests.
Return an indexmap in `all_local_trait_impls` query
The data structure previously used here required that `DefId` be `Ord`. As part of #90317, we do not want `DefId` to implement `Ord`.
Link impl items to corresponding trait items in late resolver.
Hygienically linking trait impl items to declarations in the trait can be done directly by the late resolver. In fact, it is already done to diagnose unknown items.
This PR uses this resolution work and stores the `DefId` of the trait item in the HIR. This avoids having to do this resolution manually later.
r? `@matthewjasper`
Related to #90639. The added `trait_item_id` field can be moved to `ImplItemRef` to be used directly by your PR.
Mak DefId to AccessLevel map in resolve for export
hir_id to accesslevel in resolve and applied in privacy
using local def id
removing tracing probes
making function not recursive and adding comments
Move most of Exported/Public res to rustc_resolve
moving public/export res to resolve
fix missing stability attributes in core, std and alloc
move code to access_levels.rs
return for some kinds instead of going through them
Export correctness, macro changes, comments
add comment for import binding
add comment for import binding
renmae to access level visitor, remove comments, move fn as closure, remove new_key
fmt
fix rebase
fix rebase
fmt
fmt
fix: move macro def to rustc_resolve
fix: reachable AccessLevel for enum variants
fmt
fix: missing stability attributes for other architectures
allow unreachable pub in rustfmt
fix: missing impl access level + renaming export to reexport
Missing impl access level was found thanks to a test in clippy
Remove `SymbolStr`
This was originally proposed in https://github.com/rust-lang/rust/pull/74554#discussion_r466203544. As well as removing the icky `SymbolStr` type, it allows the removal of a lot of `&` and `*` occurrences.
Best reviewed one commit at a time.
r? `@oli-obk`
`Resolver::next_node_id` converts a `u32` to a `usize` (which is
possibly bigger), does a checked add, and then converts the result back
to a `u32`. The `usize` conversion completely subverts the checked add!
This commit removes the conversion to/from `usize`.
Emit description of the ambiguity as a note.
Co-authored-by: Noah Lev <camelidcamel@gmail.com>
Co-authored-by: Vadim Petrochenkov <vadim.petrochenkov@gmail.com>
resolve: Use `NameBinding` for local variables and generic parameters
`NameBinding` is a structure used for representing any name introduction (an item, or import, or even a built-in).
Except that local variables and generic parameters weren't represented as `NameBinding`s, for this reason they requires separate paths in name resolution code in several places.
This PR introduces `NameBinding`s for local variables as well and simplifies all the code working with them leaving only the `NameBinding` paths.
Adopt let_else across the compiler
This performs a substitution of code following the pattern:
```
let <id> = if let <pat> = ... { identity } else { ... : ! };
```
To simplify it to:
```
let <pat> = ... { identity } else { ... : ! };
```
By adopting the `let_else` feature (cc #87335).
The PR also updates the syn crate because the currently used version of the crate doesn't support `let_else` syntax yet.
Note: Generally I'm the person who *removes* usages of unstable features from the compiler, not adds more usages of them, but in this instance I think it hopefully helps the feature get stabilized sooner and in a better state. I have written a [comment](https://github.com/rust-lang/rust/issues/87335#issuecomment-944846205) on the tracking issue about my experience and what I feel could be improved before stabilization of `let_else`.
Index and hash HIR as part of lowering
Part of https://github.com/rust-lang/rust/pull/88186
~Based on https://github.com/rust-lang/rust/pull/88880 (see merge commit).~
Once HIR is lowered, it is later indexed by the `index_hir` query and hashed for `crate_hash`. This PR moves those post-processing steps to lowering itself. As a side objective, the HIR crate data structure is refactored as an `IndexVec<LocalDefId, Option<OwnerInfo<'hir>>>` where `OwnerInfo` stores all the relevant information for an HIR owner.
r? `@michaelwoerister`
cc `@petrochenkov`
This performs a substitution of code following the pattern:
let <id> = if let <pat> = ... { identity } else { ... : ! };
To simplify it to:
let <pat> = ... { identity } else { ... : ! };
By adopting the let_else feature.
avoid suggesting the same name
sort candidates
fix a message
use `opt_def_id` instead of `def_id`
move `find_similarly_named_module_or_crate` to rustc_resolve/src/diagnostics.rs
It was previously cached for modules loaded from `fn get_module`, but not for modules loaded from `fn build_reduced_graph_for_external_crate_res`.
This also makes all foreign modules use their real parent, span and expansion instead of possibly a parent/span/expansion of their reexport.
An ICE happening on attempt to decode expansions for foreign enums and traits is avoided.
Also local enums and traits are now added to the module map.
Cleanup lower_generics_mut and make span be the bound itself
Closes#86298 (supersedes those changes)
r? `@cjgillot` since you reviewed the other PR
(Used wrong branch for #89338)
Do not suggest importing inaccessible items
Fixes#88472. For this example:
```rust
mod a {
struct Foo;
}
mod b {
type Bar = Foo;
}
```
rustc currently emits:
```
error[E0412]: cannot find type `Foo` in this scope
--> test.rs:6:16
|
6 | type Bar = Foo;
| ^^^ not found in this scope
|
help: consider importing this struct
|
6 | use a::Foo;
|
```
this is incorrect, as applying this suggestion leads to
```
error[E0603]: struct `Foo` is private
--> test.rs:6:12
|
6 | use a::Foo;
| ^^^ private struct
|
note: the struct `Foo` is defined here
--> test.rs:2:5
|
2 | struct Foo;
| ^^^^^^^^^^^
```
With my changes, I get:
```
error[E0412]: cannot find type `Foo` in this scope
--> test.rs:6:16
|
6 | type Bar = Foo;
| ^^^ not found in this scope
|
= note: this struct exists but is inaccessible:
a::Foo
```
As for the wildcard mentioned in #88472, I would argue that the warning is actually correct, since the import _is_ unused. I think the real issue is the wrong suggestion, which I have fixed here.
Suggest similarly named associated items in trait impls
Fix#85942
Previously, the compiler didn't suggest similarly named associated items unlike we do in many situations. This patch adds such diagnostics for associated functions, types, and constants.
Previously, the compiler didn't suggest similarly named associated items
unlike we do in many situations. This patch adds such diagnostics for
associated functions, types and constants.
The `Option<Module>` version is supported for the case where we don't know whether the `DefId` refers to a module or not.
Non-local traits and enums are also correctly found now.
Encode spans relative to the enclosing item
The aim of this PR is to avoid recomputing queries when code is moved without modification.
MCP at https://github.com/rust-lang/compiler-team/issues/443
This is achieved by :
1. storing the HIR owner LocalDefId information inside the span;
2. encoding and decoding spans relative to the enclosing item in the incremental on-disk cache;
3. marking a dependency to the `source_span(LocalDefId)` query when we translate a span from the short (`Span`) representation to its explicit (`SpanData`) representation.
Since all client code uses `Span`, step 3 ensures that all manipulations
of span byte positions actually create the dependency edge between
the caller and the `source_span(LocalDefId)`.
This query return the actual absolute span of the parent item.
As a consequence, any source code motion that changes the absolute byte position of a node will either:
- modify the distance to the parent's beginning, so change the relative span's hash;
- dirty `source_span`, and trigger the incremental recomputation of all code that
depends on the span's absolute byte position.
With this scheme, I believe the dependency tracking to be accurate.
For the moment, the spans are marked during lowering.
I'd rather do this during def-collection,
but the AST MutVisitor is not practical enough just yet.
The only difference is that we attach macro-expanded spans
to their expansion point instead of the macro itself.