A drive-by rewrite of `give_region_a_name()`
This drive-by rewrite makes the cache-updating nature of the method clearer, using the Entry API into the hash table for region names to capture the update-insert nature of the method. May be marginally more efficient since it only runtime-borrows and indexes the map once, but in this context the performance impact is almost certainly completely negligible.
Note that this commit should preserve all externally visible behaviour. Notably, it preserves the debug logging:
1. printing even in the case of a `None` for the new computed name, and
2. only printing on new values, begin silent on reused values
Invert diagnostic lints.
That is, change `diagnostic_outside_of_impl` and `untranslatable_diagnostic` from `allow` to `deny`, because more than half of the compiler has been converted to use translated diagnostics.
This commit removes more `deny` attributes than it adds `allow` attributes, which proves that this change is warranted.
r? ````@davidtwco````
Toggle assert_unsafe_precondition in codegen instead of expansion
The goal of this PR is to make some of the unsafe precondition checks in the standard library available in debug builds. Some UI tests are included to verify that it does that.
The diff is large, but most of it is blessing mir-opt tests and I've also split up this PR so it can be reviewed commit-by-commit.
This PR:
1. Adds a new intrinsic, `debug_assertions` which is lowered to a new MIR NullOp, and only to a constant after monomorphization
2. Rewrites `assume_unsafe_precondition` to check the new intrinsic, and be monomorphic.
3. Skips codegen of the `assume` intrinsic in unoptimized builds, because that was silly before but with these checks it's *very* silly
4. The checks with the most overhead are `ptr::read`/`ptr::write` and `NonNull::new_unchecked`. I've simply added `#[cfg(debug_assertions)]` to the checks for `ptr::read`/`ptr::write` because I was unable to come up with any (good) ideas for decreasing their impact. But for `NonNull::new_unchecked` I found that the majority of callers can use a different function, often a safe one.
Yes, this PR slows down the compile time of some programs. But in our benchmark suite it's never more than 1% icount, and the average icount change in debug-full programs is 0.22%. I think that is acceptable for such an improvement in developer experience.
https://github.com/rust-lang/rust/issues/120539#issuecomment-1922687101
Remove unused args from functions
`#[instrument]` suppresses the unused arguments from a function, *and* suppresses unused methods too! This PR removes things which are only used via `#[instrument]` calls, and fixes some other errors (privacy?) that I will comment inline.
It's possible that some of these arguments were being passed in for the purposes of being instrumented, but I am unconvinced by most of them.
Rollup of 9 pull requests
Successful merges:
- #119592 (resolve: Unload speculatively resolved crates before freezing cstore)
- #120103 (Make it so that async-fn-in-trait is compatible with a concrete future in implementation)
- #120206 (hir: Make sure all `HirId`s have corresponding HIR `Node`s)
- #120214 (match lowering: consistently lower bindings deepest-first)
- #120688 (GVN: also turn moves into copies with projections)
- #120702 (docs: also check the inline stmt during redundant link check)
- #120727 (exhaustiveness: Prefer "`0..MAX` not covered" to "`_` not covered")
- #120734 (Add `SubdiagnosticMessageOp` as a trait alias.)
- #120739 (improve pretty printing for associated items in trait objects)
r? `@ghost`
`@rustbot` modify labels: rollup
Normalize type outlives obligations in NLL for new solver
Normalize the type outlives assumptions and obligations in MIR borrowck. This should fix any of the lazy-norm-related MIR borrowck problems.
Also some cleanups from last PR:
1. Normalize obligations in a loop in lexical region resolution
2. Use `deeply_normalize_with_skipped_universes` in lexical resolution since we may have, e.g. `for<'a> Alias<'a>: 'b`.
r? lcnr
This rewrite makes the cache-updating nature of the function slightly clearer, using the Entry API into the hash table for region names to capture the update-insert nature of the method. May be marginally more efficient since it only runtime-borrows the map once, but in this context the performance impact is almost certainly completely negligible.
That is, change `diagnostic_outside_of_impl` and
`untranslatable_diagnostic` from `allow` to `deny`, because more than
half of the compiler has be converted to use translated diagnostics.
This commit removes more `deny` attributes than it adds `allow`
attributes, which proves that this change is warranted.
Remove `BorrowckErrors::tainted_by_errors`
This PR removes one of the `tainted_by_errors` occurrences, replacing it with direct use of `ErrorGuaranteed`.
r? `@oli-obk`
`BorrowckErrors` stores a mix of error and non-error diags in
`buffered`. As a result, it downgrades `DiagnosticBuilder`s to
`Diagnostic`s, losing the emission guarantees, and so has to use a
`tainted_by_errors` field to record whether an error has occurred.
This commit splits `buffered` into `buffered_errors` and
`buffered_non_errors`, keeping them as `DiagnosticBuilder`s and
preserving the emission guarantees.
This also requires fixing a bunch of incorrect lifetimes on
`DiagnosticBuilder` use points.
Normalize region obligation in lexical region resolution with next-gen solver
This normalizes region obligations when we `resolve_regions`, since they may be unnormalized with deferred projection equality.
It's pretty hard to add tests that exercise this without also triggering MIR borrowck errors (because we don't normalize there yet). I've added one test with two revisions that should test that we both 1. normalize region obligations in the param env, and 2. normalize registered region obligations during lexical region resolution.
Because it's almost always static.
This makes `impl IntoDiagnosticArg for DiagnosticArgValue` trivial,
which is nice.
There are a few diagnostics constructed in
`compiler/rustc_mir_build/src/check_unsafety.rs` and
`compiler/rustc_mir_transform/src/errors.rs` that now need symbols
converted to `String` with `to_string` instead of `&str` with `as_str`,
but that' no big deal, and worth it for the simplifications elsewhere.
Borrow check inline const patterns
Add type annotations to MIR so that borrowck can pass constraints from inline constants in patterns to the containing function.
Also enables some inline constant pattern tests that were fixed by the THIR unsafeck stabilization.
cc #76001
Error codes are integers, but `String` is used everywhere to represent
them. Gross!
This commit introduces `ErrCode`, an integral newtype for error codes,
replacing `String`. It also introduces a constant for every error code,
e.g. `E0123`, and removes the `error_code!` macro. The constants are
imported wherever used with `use rustc_errors::codes::*`.
With the old code, we have three different ways to specify an error code
at a use point:
```
error_code!(E0123) // macro call
struct_span_code_err!(dcx, span, E0123, "msg"); // bare ident arg to macro call
\#[diag(name, code = "E0123")] // string
struct Diag;
```
With the new code, they all use the `E0123` constant.
```
E0123 // constant
struct_span_code_err!(dcx, span, E0123, "msg"); // constant
\#[diag(name, code = E0123)] // constant
struct Diag;
```
The commit also changes the structure of the error code definitions:
- `rustc_error_codes` now just defines a higher-order macro listing the
used error codes and nothing else.
- Because that's now the only thing in the `rustc_error_codes` crate, I
moved it into the `lib.rs` file and removed the `error_codes.rs` file.
- `rustc_errors` uses that macro to define everything, e.g. the error
code constants and the `DIAGNOSTIC_TABLES`. This is in its new
`codes.rs` file.
Only use dense bitsets in dataflow analyses
When a dataflow state has the size close to the number of locals, we should prefer a dense bitset, like we already store locals in a dense vector.
Other occurrences of `ChunkedBitSet` need to be justified by the size of the dataflow state.
perf: Don't track specific live points for promoteds
We don't query this information out of the promoted (it's basically a single "unit" regardless of the complexity within it) and this saves on re-initializing the SparseIntervalMatrix's backing IndexVec with mostly empty rows for all of the leading regions in the function. Typical promoteds will only contain a few regions that need up be uplifted, while the parent function can have thousands.
For a simple function repeating println!("Hello world"); 50,000 times this reduces compile times from 90 to 15 seconds in debug mode. The previous implementations re-initialization led to an overall roughly n^2 runtime as each promoted initialized slots for ~n regions, now we scale closer to linearly (5000 hello worlds takes 1.1 seconds).
cc https://github.com/rust-lang/rust/issues/50994, https://github.com/rust-lang/rust/issues/86244
Don't use `ReErased` to detect type test promotion failed
Using `ReErased` here is convenient because it implicitly stores the state that we are explicitly recording with the `failed` variable now, but I also think it adds a tiny bit of complexity that is not worth it.
r? `@aliemjay`
We don't query this information out of the promoted (it's basically a
single "unit" regardless of the complexity within it) and this saves on
re-initializing the SparseIntervalMatrix's backing IndexVec with mostly
empty rows for all of the leading regions in the function. Typical
promoteds will only contain a few regions that need up be uplifted,
while the parent function can have thousands.
For a simple function repeating println!("Hello world"); 50,000 times
this reduces compile times from 90 to 15 seconds in debug mode. The
previous implementations re-initialization led to an overall roughly n^2
runtime as each promoted initialized slots for ~n regions, now we scale
closer to linearly (5000 hello worlds takes 1.1 seconds).
Suggest `.swap()` when encountering conflicting borrows from `mem::swap` on a slice
This PR modifies the existing suggestion by matching on `[ProjectionElem::Deref, ProjectionElem::Index(_)]` instead of just `[ProjectionElem::Index(_)]`, which caused us to miss many cases. Additionally, it adds a more specific, machine-applicable suggestion in the case we determine `mem::swap` was used to swap elements in a slice.
Closes#102269