Stabilize the 2024 edition
This stabilizes the 2024 edition for Rust 1.85, scheduled to be released on February 20, 2025. 🎉
cc tracking issue: https://github.com/rust-lang/rust/issues/117258
There is a fair amount of follow-up work after this that I am working on (various docs, cargo, rustfmt, etc.), and this is will unblock those other changes.
Rollup of 8 pull requests
Successful merges:
- #133238 (re-export `is_loongarch_feature_detected`)
- #133288 (Support `each_ref` and `each_mut` in `[T; N]` in constant expressions.)
- #133311 (Miri subtree update)
- #133313 (Use arc4random of libc for RTEMS target)
- #133319 (Simplify `fulfill_implication`)
- #133323 (Bail in effects in old solver if self ty is ty var)
- #133330 (library: update comment around close())
- #133337 (Fix typo in `std:🧵:Scope::spawn` documentation.)
r? `@ghost`
`@rustbot` modify labels: rollup
Bail in effects in old solver if self ty is ty var
Otherwise when we try to check something like `?t: ~const Trait` we'll immediately stick it to the first param-env candidate, lol.
r? lcnr
Support `each_ref` and `each_mut` in `[T; N]` in constant expressions.
Tracking issue: #133289
The methods `<[T; N]>::each_ref` and `<[T; N]>::each_mut` can easily be reimplemented to allow marking them with the `const` specifier.
This specific implementation takes a different approach than the original as to avoid using iterators (which are illegal in constant expressions).
Stabilize `Ipv6Addr::is_unique_local` and `Ipv6Addr::is_unicast_link_local`
Make `Ipv6Addr::is_unique_local` and `Ipv6Addr::is_unicast_link_local` stable (+const).
Newly stable API:
```rust
impl Ipv6Addr {
// Newly stable under `ipv6_is_unique_local`
const fn is_unique_local(&self) -> bool;
// Newly stable under `ipv6_is_unique_local`
const fn is_unicast_link_local(&self) -> bool;
}
```
These stabilise a subset of the following tracking issue:
- #27709
I have looked and could not find any issues with `is_unique_local` and `is_unicast_link_local`. There is a well received comment calling for stabilisation of the latter function.
Both functions are well defined and consistent with implementations in other languages:
- [Go](https://cs.opensource.google/go/go/+/refs/tags/go1.23.0:src/net/netip/netip.go;l=518)
- [Python](e9d1bf353c/Lib/ipaddress.py (L2319-L2321))
- [Ruby (unique local)](https://ruby-doc.org/stdlib-2.5.1/libdoc/ipaddr/rdoc/IPAddr.html#private-3F-source)
- [Ruby (unicast link local)](https://ruby-doc.org/stdlib-2.5.1/libdoc/ipaddr/rdoc/IPAddr.html#link_local-3F-source)
cc implementor `@little-dude`
(I can't find the original PR for `is_unqiue_local`)
r? libs-api
`@rustbot` label +T-libs-api +needs-fcp
[AIX] change system dynamic library format
Historically on AIX, almost all dynamic libraries are distributed in `.a` Big Archive Format which can consists of both static and shared objects in the same archive (e.g. `libc++abi.a(libc++abi.so.1)`). During the initial porting process, the dynamic libraries are kept as `.a` to simplify the migration, but semantically having an XCOFF object under the archive extension is wrong. For crate type `cdylib` we want to be able to distribute the libraries as archives as well.
We are migrating to archives with the following format:
```
$ ar -t lib<name>.a
lib<name>.so
```
where each archive contains a single member that is a shared XCOFF object that can be loaded.
This moves the list of submodules needed to vendor close to the list of
cargo workspaces with the intent to help ensure they keep up-to-date and
in sync.
This is explicitly mentioned for std::fs::remove_file's documentation,
but not in the aforementioned function.
It is more likely for a slightly lazy programmer to believe that
removing a file would work and that they do not have to distinguish
between directories (with contents) and files themself, because of the
function's recursive nature and how it distinguishes between files and
directories when removing them.
Don't exclude relnotes from `needs-triage` label
So initially we *didn't* exclude `needs-triage` label, then we did exclude them in #132825 as sometimes the `needs-triage` is redundant. However, I think they are probably worth double-checking because often some of the labels are only accurate/relevant for the *implementation* PR, but not for the purposes of the relnotes tracking issue. Furthermore, sometimes relevant team labels can be removed. So to make it less likely for relnotes to slip through, I think we should still label relnotes-tracking-issues with `needs-triage`.
cc https://rust-lang.zulipchat.com/#narrow/channel/241545-t-release/topic/Please.20CC.20lang
r? release
Fix closure arg extraction in `extract_callable_info`, generalize it to async closures
* Fix argument extraction in `extract_callable_info`
* FIx `extract_callable_info` to work for async closures
* Remove redundant `is_fn_ty` which is just a less general `extract_callable_info`
* More precisely name what is being called (i.e. call it a "closure" not a "function")
Review this without whitespace -- I ended up reformatting `extract_callable_info` because some pesky `//` comments were keeping the let-chains from being formatted.