- Closures in external crates may get compiled in because of
monomorphization. We should store names of captured variables
in `optimized_mir`, so that they are written into the metadata
file and we can use them to generate debuginfo.
- If there are breakpoints inside closures, the names of captured
variables stored in `optimized_mir` can be used to print them.
Now the name is more precise when disjoint fields are captured.
Previously, debuggers print closures as something like
```
y::main::closure-0 (0x7fffffffdd34)
```
The pointer actually references to an upvar. It is not
very obvious, especially for beginners.
It's because upvars don't have names before, as they
are packed into a tuple. This commit names the upvars,
so we can expect to see something like
```
y::main::closure-0 {_captured_ref__b: 0x[...]}
```
Query-ify global limit attribute handling
Currently, we read various 'global limits' from inner attributes the crate root (`recursion_limit`, `move_size_limit`, `type_length_limit`, `const_eval_limit`). These limits are then stored in `Sessions`, allowing them to be access from a `TyCtxt` without registering a dependency on the crate root attributes.
This PR moves the calculation of these global limits behind queries, so that we properly track dependencies on crate root attributes. During the setup of macro expansion (before we've created a `TyCtxt`), we need to access the recursion limit, which is now done by directly calling into the code shared by the normal query implementations.
Hack: Ignore inference variables in certain queries
Fixes#84841Fixes#86753
Some queries are not built to accept types with inference variables, which can lead to ICEs. These queries probably ought to be converted to canonical form, but as a quick workaround, we can return conservative results in the case that inference variables are found.
We should file a follow-up issue (and update the FIXMEs...) to do the proper refactoring.
cc `@arora-aman`
r? `@oli-obk`
Support allocation failures when interpreting MIR
This closes#79601 by handling the case where memory allocation fails during MIR interpretation, and translates that failure into an `InterpError`. The error message is "tried to allocate more memory than available to compiler" to make it clear that the memory shortage is happening at compile-time by the compiler itself, and that it is not a runtime issue.
Now that memory allocation can fail, it would be neat if Miri could simulate low-memory devices to make it easy to see how much memory a Rust program needs.
Note that this breaks Miri because it assumes that allocation can never fail.
Fix ICE when `main` is declared in an `extern` block
Changes in #84401 to implement `imported_main` changed how the crate entry point is found, and a declared `main` in an `extern` block was detected erroneously. This was causing the ICE described in #86110.
This PR adds a check for this case and emits an error instead. Previously a `main` declaration in an `extern` block was not detected as an entry point at all, so emitting an error shouldn't break anything that worked previously. In 1.52.1 stable this is demonstrated, with a `` `main` function not found`` error.
Fixes#86110
Remove unused dependencies from compiler crates
Various compiler crates have dependencies that they don't appear to use. I used some scripting to detect such dependencies, filtered them based on some manual review, and removed those that do indeed appear to be entirely unused.
Introduce -Zprofile-closures to evaluate the impact of 2229
This creates a CSV with name "closure_profile_XXXXX.csv", where the
variable part is the process id of the compiler.
To profile a cargo project you can run one of the following depending on
if you're compiling a library or a binary:
```
cargo +nightly rustc --lib -- -Zprofile-closures
cargo +nightly rustc --bin {binary_name} -- -Zprofile-closures
```
r? `@nikomatsakis`