Remove `Session::one_time_diagnostic`
This is untracked mutable state, which modified the behaviour of queries.
It was used for 2 things: some full-blown errors, but mostly for lint declaration notes ("the lint level is defined here" notes).
It is replaced by the diagnostic deduplication infra which already exists in the diagnostic emitter.
A new diagnostic level `OnceNote` is introduced specifically for lint notes, to deduplicate subdiagnostics.
As a drive-by, diagnostic emission takes a `&mut` to allow dropping the `SubDiagnostic`s.
Swap DtorckConstraint to DropckConstraint
This change was made as per suspicion that this struct was never renamed after consistent use of DropCk.
This also clarifies the meaning behind the name of this structure.
Fixes https://github.com/rust-lang/rust/issues/94310
Clarify which kinds of MIR are allowed during which phases.
This enhances documentation with these details and extends the validator to check these requirements more thoroughly. Most of these conditions were already being checked.
There was also some disagreement between the `MirPhase` docs and validator as to what it meant for the `body.phase` field to have a certain value. This PR resolves those disagreements in favor of the `MirPhase` docs (which is what the pass manager implemented), adjusting the validator accordingly. The result is now that the `DropLowering` phase begins with the end of the elaborate drops pass, and lasts until the beginning of the generator lowring pass. This doesn't feel entirely natural to me, but as long as it's documented accurately it should be ok.
r? rust-lang/mir-opt
This change was made as per suspicion that this struct was never renamed after consistent use of DropCk.
This also clarifies the meaning behind the name of this structure.
Change Thir to lazily create constants
To allow `AbstractConst`s to work with the previous thir changes we made and those we want to make, i.e. to avoid problems due to `ValTree` and `ConstValue` conversions, we instead switch to a thir representation for constants that allows us to lazily create constants.
r? `@oli-obk`
Properly track `ImplObligations`
Instead of probing for all possible `impl`s that could have caused an
`ImplObligation`, keep track of its `DefId` and obligation spans for
accurate error reporting.
Follow to #89580. Addresses #89418.
Instead of probing for all possible impls that could have caused an
`ImplObligation`, keep track of its `DefId` and obligation spans for
accurate error reporting.
Follow up to #89580. Addresses #89418.
Remove some unnecessary clones.
Tweak output for auto trait impl obligations.
This enhances documentation with these details and extends the validator to check these requirements
more thoroughly. As a part of this, we add a new `Deaggregated` phase, and rename other phases so
that their names more naturally correspond to what they represent.
There are a few places were we have to construct it, though, and a few
places that are more invasive to change. To do this, we create a
constructor with a long obvious name.
fix typos
Rework of #94603 which got closed as I was trying to unmerge and repush. This is a subset of changes from the original pr as I sed'd whatever typos I remembered from the original PR
thanks to `@cuishuang` for the original PR
Improve `expect` impl and handle `#[expect(unfulfilled_lint_expectations)]` (RFC 2383)
This PR updates unstable `ExpectationIds` in stashed diagnostics and adds some asserts to ensure that the stored expectations are really empty in the end. Additionally, it handles the `#[expect(unfulfilled_lint_expectations)]` case.
According to the [Errors and lints docs](https://rustc-dev-guide.rust-lang.org/diagnostics.html#diagnostic-levels) the `error` level should only be used _"when the compiler detects a problem that makes it unable to compile the program"_. As this isn't the case with `#[expect(unfulfilled_lint_expectations)]` I decided to only create a warning. To avoid adding a new lint only for this case, I simply emit a `unfulfilled_lint_expectations` diagnostic with an additional note.
---
r? `@wesleywiser` I'm requesting a review from you since you reviewed the previous PR https://github.com/rust-lang/rust/pull/87835. You are welcome to reassign it if you're busy 🙃
rfc: [RFC-2383](https://rust-lang.github.io/rfcs/2383-lint-reasons.html)
tracking issue: https://github.com/rust-lang/rust/issues/85549
cc: `@flip1995` In case you're also interested in this :)
Type params and assoc types have unit metadata if they are sized
Extend the logic in `Pointee` projection to ensure that we can satisfy `<T as Pointee>::Metadata = ()` if `T: Sized`.
cc: `@SimonSapin` and #93959
Return early to fix ICE
This fixes#94627, ICE happens because compiler tries to suggest constraining type parameter but the only constraint is implicit `std::Sized` one, so it gets removed and there is nothing to suggest resulting in ICE.
Improve `AdtDef` interning.
This commit makes `AdtDef` use `Interned`. Much of the commit is tedious
changes to introduce getter functions. The interesting changes are in
`compiler/rustc_middle/src/ty/adt.rs`.
r? `@fee1-dead`
CTFE/Miri: detect out-of-bounds pointers in offset_from
Also I became uneasy with aggressively doing `try_to_int` here -- this will always succeed on Miri, leading to the wrong codepath being taken. We should rather try to convert them both to pointers, and use the integer path as a fallback, so that's what I implemented now.
Hiding whitespaces helps with the diff.
Fixes https://github.com/rust-lang/miri/issues/1950
r? ``@oli-obk``
Change several HashMaps to IndexMap to improve incremental hashing performance
Stable hashing hash maps in incremental mode takes a lot of time, especially for some benchmarks like `clap`. As noted by `@Mark-Simulacrum` [here](https://github.com/rust-lang/rust/pull/89404#issuecomment-950043892), this cost could be reduced by replacing some hash maps by indexmaps.
I gathered some statistics and found several hash maps that took a lot of time to hash and replaced them by indexmaps. However, in order for this to work, we need to make sure that these indexmaps have deterministic insertion order. These three are used only in visitors as far as I can see, which seems deterministic. Can we enforce this somehow? Or should some explaining comment be included for these maps?
This commit makes `AdtDef` use `Interned`. Much the commit is tedious
changes to introduce getter functions. The interesting changes are in
`compiler/rustc_middle/src/ty/adt.rs`.
mir-opt: Replace clone on primitives with copy
We can't do it for everything, but it would be nice to at least stop making calls to clone methods in debug from things like derived-clones.
r? `@ghost`
This updates the standard library's documentation to use the new syntax. The
documentation is worthwhile to update as it should be more idiomatic
(particularly for features like this, which are nice for users to get acquainted
with). The general codebase is likely more hassle than benefit to update: it'll
hurt git blame, and generally updates can be done by folks updating the code if
(and when) that makes things more readable with the new format.
A few places in the compiler and library code are updated (mostly just due to
already having been done when this commit was first authored).
diagnostics: use rustc_on_unimplemented to recommend `[].iter()`
To make this work, the `#[rustc_on_unimplemented]` data needs to be used to
report method resolution errors, which is most of what this commit does.
Fixes#94581
This change is somewhat extensive, since it affects MIR -- since this is called to determine Copy vs Move -- so any test that's `no_core` needs to actually have the normal `impl`s it uses.
Treat constant values as mir::ConstantKind::Val
Another step that is necessary for the introduction of Valtrees: we don't want to treat `ty::Const` instances of kind `ty::ConstKind::Value` as `mir::ConstantKind::Ty` anymore.
r? `@oli-obk`
add `#[rustc_pass_by_value]` to more types
the only interesting changes here should be to `TransitiveRelation`, but I believe to be highly unlikely that we will ever use a non `Copy` type with this type.
To make this work, the `#[rustc_on_unimplemented]` data needs to be used to
report method resolution errors, which is most of what this commit does.
Fixes#94581
Use impl substs in `#[rustc_on_unimplemented]`
We were using the trait-ref substs instead of impl substs in `rustc_on_unimplemented`, even when computing the `rustc_on_unimplemented` attached to an impl block. Let's not do that.
This PR also untangles impl and trait def-ids in the logic in `on_unimplemented` a bit.
Fixes#94675
Clarify `Layout` interning.
`Layout` is another type that is sometimes interned, sometimes not, and
we always use references to refer to it so we can't take any advantage
of the uniqueness properties for hashing or equality checks.
This commit renames `Layout` as `LayoutS`, and then introduces a new
`Layout` that is a newtype around an `Interned<LayoutS>`. It also
interns more layouts than before. Previously layouts within layouts
(via the `variants` field) were never interned, but now they are. Hence
the lifetime on the new `Layout` type.
Unlike other interned types, these ones are in `rustc_target` instead of
`rustc_middle`. This reflects the existing structure of the code, which
does layout-specific stuff in `rustc_target` while `TyAndLayout` is
generic over the `Ty`, allowing the type-specific stuff to occur in
`rustc_middle`.
The commit also adds a `HashStable` impl for `Interned`, which was
needed. It hashes the contents, unlike the `Hash` impl which hashes the
pointer.
r? `@fee1-dead`
`Layout` is another type that is sometimes interned, sometimes not, and
we always use references to refer to it so we can't take any advantage
of the uniqueness properties for hashing or equality checks.
This commit renames `Layout` as `LayoutS`, and then introduces a new
`Layout` that is a newtype around an `Interned<LayoutS>`. It also
interns more layouts than before. Previously layouts within layouts
(via the `variants` field) were never interned, but now they are. Hence
the lifetime on the new `Layout` type.
Unlike other interned types, these ones are in `rustc_target` instead of
`rustc_middle`. This reflects the existing structure of the code, which
does layout-specific stuff in `rustc_target` while `TyAndLayout` is
generic over the `Ty`, allowing the type-specific stuff to occur in
`rustc_middle`.
The commit also adds a `HashStable` impl for `Interned`, which was
needed. It hashes the contents, unlike the `Hash` impl which hashes the
pointer.
Currently some `Allocation`s are interned, some are not, and it's very
hard to tell at a use point which is which.
This commit introduces `ConstAllocation` for the known-interned ones,
which makes the division much clearer. `ConstAllocation::inner()` is
used to get the underlying `Allocation`.
In some places it's natural to use an `Allocation`, in some it's natural
to use a `ConstAllocation`, and in some places there's no clear choice.
I've tried to make things look as nice as possible, while generally
favouring `ConstAllocation`, which is the type that embodies more
information. This does require quite a few calls to `inner()`.
The commit also tweaks how `PartialOrd` works for `Interned`. The
previous code was too clever by half, building on `T: Ord` to make the
code shorter. That caused problems with deriving `PartialOrd` and `Ord`
for `ConstAllocation`, so I changed it to build on `T: PartialOrd`,
which is slightly more verbose but much more standard and avoided the
problems.
Ensure stability directives are checked in all cases
Split off #93017
Stability and deprecation were not checked in all cases, for instance if a type error happened.
This PR moves the check earlier in the pipeline to ensure the errors are emitted in all cases.
r? `@lcnr`
improve comments for `simplify_type`
Should now correctly describe what's going on. Experimented with checking the invariant for projections
but that ended up requiring fairly involved changes. I assume that it is not possible to get unsoundness here,
at least for now and I can pretty much guarantee that it's impossible to trigger it by accident.
r? `````@nikomatsakis````` cc #92721
Implementation of the `expect` attribute (RFC 2383)
This is an implementation of the `expect` attribute as described in [RFC-2383](https://rust-lang.github.io/rfcs/2383-lint-reasons.html). The attribute allows the suppression of lint message by expecting them. Unfulfilled lint expectations (meaning no expected lint was caught) will emit the `unfulfilled_lint_expectations` lint at the `expect` attribute.
### Example
#### input
```rs
// required feature flag
#![feature(lint_reasons)]
#[expect(unused_mut)] // Will warn about an unfulfilled expectation
#[expect(unused_variables)] // Will be fulfilled by x
fn main() {
let x = 0;
}
```
#### output
```txt
warning: this lint expectation is unfulfilled
--> $DIR/trigger_lint.rs:3:1
|
LL | #[expect(unused_mut)] // Will warn about an unfulfilled expectation
| ^^^^^^^^^^
|
= note: `#[warn(unfulfilled_lint_expectations)]` on by default
```
### Implementation
This implementation introduces `Expect` as a new lint level for diagnostics, which have been expected. All lint expectations marked via the `expect` attribute are collected in the [`LintLevelsBuilder`] and assigned an ID that is stored in the new lint level. The `LintLevelsBuilder` stores all found expectations and the data needed to emit the `unfulfilled_lint_expectations` in the [`LintLevelsMap`] which is the result of the [`lint_levels()`] query.
The [`rustc_errors::HandlerInner`] is the central error handler in rustc and handles the emission of all diagnostics. Lint message with the level `Expect` are suppressed during this emission, while the expectation ID is stored in a set which marks them as fulfilled. The last step is then so simply check if all expectations collected by the [`LintLevelsBuilder`] in the [`LintLevelsMap`] have been marked as fulfilled in the [`rustc_errors::HandlerInner`]. Otherwise, a new lint message will be emitted.
The implementation of the `LintExpectationId` required some special handling to make it stable between sessions. Lints can be emitted during [`EarlyLintPass`]es. At this stage, it's not possible to create a stable identifier. The level instead stores an unstable identifier, which is later converted to a stable `LintExpectationId`.
### Followup TO-DOs
All open TO-DOs have been marked with `FIXME` comments in the code. This is the combined list of them:
* [ ] The current implementation doesn't cover cases where the `unfulfilled_lint_expectations` lint is actually expected by another `expect` attribute.
* This should be easily possible, but I wanted to get some feedback before putting more work into this.
* This could also be done in a new PR to not add to much more code to this one
* [ ] Update unstable documentation to reflect this change.
* [ ] Update unstable expectation ids in [`HandlerInner::stashed_diagnostics`](https://doc.rust-lang.org/nightly/nightly-rustc/rustc_errors/struct.HandlerInner.html#structfield.stashed_diagnostics)
### Open questions
I also have a few open questions where I would like to get feedback on:
1. The RFC discussion included a suggestion to change the `expect` attribute to something else. (Initiated by `@Ixrec` [here](https://github.com/rust-lang/rfcs/pull/2383#issuecomment-378424091), suggestion from `@scottmcm` to use `#[should_lint(...)]` [here](https://github.com/rust-lang/rfcs/pull/2383#issuecomment-378648877)). No real conclusion was drawn on that point from my understanding. Is this still open for discussion, or was this discarded with the merge of the RFC?
2. How should the expect attribute deal with the new `force-warn` lint level?
---
This approach was inspired by a discussion with `@LeSeulArtichaut.`
RFC tracking issue: #54503
Mentoring/Implementation issue: #85549
[`LintLevelsBuilder`]: https://doc.rust-lang.org/nightly/nightly-rustc/rustc_lint/levels/struct.LintLevelsBuilder.html
[`LintLevelsMap`]: https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/lint/struct.LintLevelMap.html
[`lint_levels()`]: https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/context/struct.TyCtxt.html#method.lint_levels
[`rustc_errors::HandlerInner`]: https://doc.rust-lang.org/nightly/nightly-rustc/rustc_errors/struct.HandlerInner.html
[`EarlyLintPass`]: https://doc.rust-lang.org/nightly/nightly-rustc/rustc_lint/trait.EarlyLintPass.html
Miri/CTFE: properly treat overflow in (signed) division/rem as UB
To my surprise, it looks like LLVM treats overflow of signed div/rem as UB. From what I can tell, MIR `Div`/`Rem` directly lowers to the corresponding LLVM operation, so to make that correct we also have to consider these overflows UB in the CTFE/Miri interpreter engine.
r? `@oli-obk`
Restore the local filter on mono item sorting
In `CodegenUnit::items_in_deterministic_order`, there's a comment that
only local HirIds should be taken into account, but #90408 removed the
`as_local` call that sets others to None. Restoring that check fixes the
s390x hangs seen in [RHBZ 2058803].
[RHBZ 2058803]: https://bugzilla.redhat.com/show_bug.cgi?id=2058803
Adt copy suggestions
Previously we've only suggested adding `Copy` bounds when the type being moved/copied is a type parameter (generic). With this PR we also suggest adding bounds when a type
- Can be copy
- All predicates that need to be satisfied for that are based on type params
i.e. we will suggest `T: Copy` for `Option<T>`, but won't suggest anything for `Option<String>`.
An example:
```rust
fn duplicate<T>(t: Option<T>) -> (Option<T>, Option<T>) {
(t, t)
}
```
New error (current compiler doesn't provide `help`:):
```text
error[E0382]: use of moved value: `t`
--> t.rs:2:9
|
1 | fn duplicate<T>(t: Option<T>) -> (Option<T>, Option<T>) {
| - move occurs because `t` has type `Option<T>`, which does not implement the `Copy` trait
2 | (t, t)
| - ^ value used here after move
| |
| value moved here
|
help: consider restricting type parameter `T`
|
1 | fn duplicate<T: Copy>(t: Option<T>) -> (Option<T>, Option<T>) {
| ++++++
```
Fixes#93623
r? ``````````@estebank``````````
``````````@rustbot`````````` label +A-diagnostics +A-suggestion-diagnostics +C-enhancement
----
I'm not at all sure if this is the right implementation for this kind of suggestion, but it seems to work :')
Direct users towards using Rust target feature names in CLI
This PR consists of a couple of changes on how we handle target features.
In particular there is a bug-fix wherein we avoid passing through features that aren't prefixed by `+` or `-` to LLVM. These appear to be causing LLVM to assert, which is pretty poor a behaviour (and also makes it pretty clear we expect feature names to be prefixed).
The other commit, I anticipate to be somewhat more controversial is outputting a warning when users specify a LLVM-specific, or otherwise unknown, feature name on the CLI. In those situations we request users to either replace it with a known Rust feature name (e.g. `bmi` -> `bmi1`) or file a feature request. I've a couple motivations for this: first of all, if users are specifying these features on the command line, I'm pretty confident there is also a need for these features to be usable via `#[cfg(target_feature)]` machinery. And second, we're growing a fair number of backends recently and having ability to provide some sort of unified-ish interface in this place seems pretty useful to me.
Sponsored by: standard.ai
In `CodegenUnit::items_in_deterministic_order`, there's a comment that
only local HirIds should be taken into account, but #90408 removed the
`as_local` call that sets others to None. Restoring that check fixes the
s390x hangs seen in [RHBZ 2058803].
[RHBZ 2058803]: https://bugzilla.redhat.com/show_bug.cgi?id=2058803
Add `rustc_middle::ty::suggest_constraining_type_params` that suggests
adding multiple constraints.
`suggest_constraining_type_param` now just forwards params to this new
function.
Caching the stable hash of Ty within itself
Instead of computing stable hashes on types as needed, we compute it during interning.
This way we can, when a hash is requested, just hash that hash, which is significantly faster than traversing the type itself.
We only do this for incremental for now, as incremental is the only frequent user of stable hashing.
As a next step we can try out
* moving the hash and TypeFlags to Interner, so projections and regions get the same benefit (tho regions are not nested, so maybe that's not a good idea? Would be nice for dedup tho)
* start comparing types via their stable hash instead of their address?
Apply noundef attribute to all scalar types which do not permit raw init
Beyond `&`/`&mut`/`Box`, this covers `char`, enum discriminants, `NonZero*`, etc.
All such types currently cause a Miri error if left uninitialized,
and an `invalid_value` lint in cases like `mem::uninitialized::<char>()`.
Note that this _does not_ change whether or not it is UB for `u64` (or
other integer types with no invalid values) to be undef.
Fixes (partially) #74378.
r? `@ghost` (blocked on #94127)
`@rustbot` label S-blocked
Avoid query cache sharding code in single-threaded mode
In non-parallel compilers, this is just adding needless overhead at compilation time (since there is only one shard statically anyway). This amounts to roughly ~10 seconds reduction in bootstrap time, with overall neutral (some wins, some losses) performance results.
Parallel compiler performance should be largely unaffected by this PR; sharding is kept there.
Beyond `&`/`&mut`/`Box`, this covers `char`, discriminants, `NonZero*`, etc.
All such types currently cause a Miri error if left uninitialized,
and an `invalid_value` lint in cases like `mem::uninitialized::<char>()`
Note that this _does not_ change whether or not it is UB for `u64` (or
other integer types with no invalid values) to be undef.
fix a message
implement a rustfix-applicable suggestion
implement `suggest_floating_point_literal`
add `ObligationCauseCode::BinOp`
remove duplicate code
fix function names in uitests
use `Diagnostic` instead of `DiagnosticBuilder`
Print `ParamTy` and `ParamConst` instead of displaying them
Display for `ParamTy` and `ParamConst` is implemented in terms of print.
Using print avoids creating a new `FmtPrinter` just to display the
parameter name.
r? `@Mark-Simulacrum`
Remove in band lifetimes
As discussed in t-lang backlog bonanza, the `in_band_lifetimes` FCP closed in favor for the feature not being stabilized. This PR removes `#![feature(in_band_lifetimes)]` in its entirety.
Let me know if this PR is too hasty, and if we should instead do something intermediate for deprecate the feature first.
r? `@scottmcm` (or feel free to reassign, just saw your last comment on #44524)
Closes#44524
Use undef for (some) partially-uninit constants
There needs to be some limit to avoid perf regressions on large arrays
with undef in each element (see comment in the code).
Fixes: #84565
Original PR: #83698
Depends on LLVM 14: #93577
Convert `newtype_index` to a proc macro
The `macro_rules!` implementation was becomng excessively complicated,
and difficult to modify. The new proc macro implementation should make
it much easier to add new features (e.g. skipping certain `#[derive]`s)
rustc_errors: let `DiagnosticBuilder::emit` return a "guarantee of emission".
That is, `DiagnosticBuilder` is now generic over the return type of `.emit()`, so we'll now have:
* `DiagnosticBuilder<ErrorReported>` for error (incl. fatal/bug) diagnostics
* can only be created via a `const L: Level`-generic constructor, that limits allowed variants via a `where` clause, so not even `rustc_errors` can accidentally bypass this limitation
* asserts `diagnostic.is_error()` on emission, just in case the construction restriction was bypassed (e.g. by replacing the whole `Diagnostic` inside `DiagnosticBuilder`)
* `.emit()` returns `ErrorReported`, as a "proof" token that `.emit()` was called
(though note that this isn't a real guarantee until after completing the work on
#69426)
* `DiagnosticBuilder<()>` for everything else (warnings, notes, etc.)
* can also be obtained from other `DiagnosticBuilder`s by calling `.forget_guarantee()`
This PR is a companion to other ongoing work, namely:
* #69426
and it's ongoing implementation:
#93222
the API changes in this PR are needed to get statically-checked "only errors produce `ErrorReported` from `.emit()`", but doesn't itself provide any really strong guarantees without those other `ErrorReported` changes
* #93244
would make the choices of API changes (esp. naming) in this PR fit better overall
In order to be able to let `.emit()` return anything trustable, several changes had to be made:
* `Diagnostic`'s `level` field is now private to `rustc_errors`, to disallow arbitrary "downgrade"s from "some kind of error" to "warning" (or anything else that doesn't cause compilation to fail)
* it's still possible to replace the whole `Diagnostic` inside the `DiagnosticBuilder`, sadly, that's harder to fix, but it's unlikely enough that we can paper over it with asserts on `.emit()`
* `.cancel()` now consumes `DiagnosticBuilder`, preventing `.emit()` calls on a cancelled diagnostic
* it's also now done internally, through `DiagnosticBuilder`-private state, instead of having a `Level::Cancelled` variant that can be read (or worse, written) by the user
* this removes a hazard of calling `.cancel()` on an error then continuing to attach details to it, and even expect to be able to `.emit()` it
* warnings were switched to *only* `can_emit_warnings` on emission (instead of pre-cancelling early)
* `struct_dummy` was removed (as it relied on a pre-`Cancelled` `Diagnostic`)
* since `.emit()` doesn't consume the `DiagnosticBuilder` <sub>(I tried and gave up, it's much more work than this PR)</sub>,
we have to make `.emit()` idempotent wrt the guarantees it returns
* thankfully, `err.emit(); err.emit();` can return `ErrorReported` both times, as the second `.emit()` call has no side-effects *only* because the first one did do the appropriate emission
* `&mut Diagnostic` is now used in a lot of function signatures, which used to take `&mut DiagnosticBuilder` (in the interest of not having to make those functions generic)
* the APIs were already mostly identical, allowing for low-effort porting to this new setup
* only some of the suggestion methods needed some rework, to have the extra `DiagnosticBuilder` functionality on the `Diagnostic` methods themselves (that change is also present in #93259)
* `.emit()`/`.cancel()` aren't available, but IMO calling them from an "error decorator/annotator" function isn't a good practice, and can lead to strange behavior (from the caller's perspective)
* `.downgrade_to_delayed_bug()` was added, letting you convert any `.is_error()` diagnostic into a `delay_span_bug` one (which works because in both cases the guarantees available are the same)
This PR should ideally be reviewed commit-by-commit, since there is a lot of fallout in each.
r? `@estebank` cc `@Manishearth` `@nikomatsakis` `@mark-i-m`
These links never worked, but the lint was suppressed due to the fact
that the span was pointing into the macro. With the new macro
implementation, the span now points directly to the doc comment in the
macro invocation, so it's no longer suppressed.
Always format to internal String in FmtPrinter
This avoids monomorphizing for different parameters, decreasing generic code
instantiated downstream from rustc_middle -- locally seeing 7% unoptimized LLVM IR
line wins on rustc_borrowck, for example.
We likely can't/shouldn't get rid of the Result-ness on most functions, though some
further cleanup avoiding fmt::Error where we now know it won't occur may be possible,
though somewhat painful -- fmt::Write is a pretty annoying API to work with in practice
when you're trying to use it infallibly.
Display for `ParamTy` and `ParamConst` is implemented in terms of print.
Using print avoids creating a new `FmtPrinter` just to display the
parameter name.
Rollup of 7 pull requests
Successful merges:
- #94169 (Fix several asm! related issues)
- #94178 (tidy: fire less "ignoring file length unneccessarily" warnings)
- #94179 (solarish current_exe using libc call directly)
- #94196 (compiletest: Print process output info with less whitespace)
- #94208 (Add the let else tests found missing in the stabilization report)
- #94237 (Do not suggest wrapping an item if it has ambiguous un-imported methods)
- #94246 (ScalarMaybeUninit is explicitly hexadecimal in its formatting)
Failed merges:
r? `@ghost`
`@rustbot` modify labels: rollup
ScalarMaybeUninit is explicitly hexadecimal in its formatting
This makes `ScalarMaybeUninit` consistent with `Scalar` after the changes in https://github.com/rust-lang/rust/pull/94189.
r? ``@oli-obk``
Fix several asm! related issues
This is a combination of several fixes, each split into a separate commit. Splitting these into PRs is not practical since they conflict with each other.
Fixes#92378Fixes#85247
r? ``@nagisa``
CTFE engine: Scalar: expose size-generic to_(u)int methods
This matches the size-generic constructors `Scalar::from_(u)int`, and it would have helped in https://github.com/rust-lang/miri/pull/1978.
r? `@oli-obk`
safely `transmute<&List<Ty<'tcx>>, &List<GenericArg<'tcx>>>`
This PR has 3 relevant steps which are is split in distinct commits.
The first commit now interns `List<Ty<'tcx>>` and `List<GenericArg<'tcx>>` together, potentially reusing memory while allowing free conversions between these two using `List<Ty<'tcx>>::as_substs()` and `SubstsRef<'tcx>::try_as_type_list()`.
Using this, we then use `&'tcx List<Ty<'tcx>>` instead of a `SubstsRef<'tcx>` for tuple fields, simplifying a bunch of code.
Finally, as tuple fields and other generic arguments now use a different `TypeFoldable<'tcx>` impl, we optimize the impl for `List<Ty<'tcx>>` improving perf by slightly less than 1% in tuple heavy benchmarks.
This reverts commit a240ccd81c, reversing
changes made to 393fdc1048.
This PR was likely responsible for a relatively large regression in
dist-x86_64-msvc-alt builder times, from approximately 1.7 to 2.8 hours,
bringing that builder into the pool of the slowest builders we currently have.
This seems to be limited to the alt builder due to needing parallel-compiler
enabled, likely leading to slow LLVM compilation for some reason.
Improve `unused_unsafe` lint
I’m going to add some motivation and explanation below, particularly pointing the changes in behavior from this PR.
_Edit:_ Looking for existing issues, looks like this PR fixes#88260.
_Edit2:_ Now also contains code that closes#90776.
Main motivation: Fixes some issues with the current behavior. This PR is
more-or-less completely re-implementing the unused_unsafe lint; it’s also only
done in the MIR-version of the lint, the set of tests for the `-Zthir-unsafeck`
version no longer succeeds (and is thus disabled, see `lint-unused-unsafe.rs`).
On current nightly,
```rs
unsafe fn unsf() {}
fn inner_ignored() {
unsafe {
#[allow(unused_unsafe)]
unsafe {
unsf()
}
}
}
```
doesn’t create any warnings. This situation is not unrealistic to come by, the
inner `unsafe` block could e.g. come from a macro. Actually, this PR even
includes removal of one unused `unsafe` in the standard library that was missed
in a similar situation. (The inner `unsafe` coming from an external macro hides
the warning, too.)
The reason behind this problem is how the check currently works:
* While generating MIR, it already skips nested unsafe blocks (i.e. unsafe
nested in other unsafe) so that the inner one is always the one considered
unused
* To differentiate the cases of no unsafe operations inside the `unsafe` vs.
a surrounding `unsafe` block, there’s some ad-hoc magic walking up the HIR to
look for surrounding used `unsafe` blocks.
There’s a lot of problems with this approach besides the one presented above.
E.g. the MIR-building uses checks for `unsafe_op_in_unsafe_fn` lint to decide
early whether or not `unsafe` blocks in an `unsafe fn` are redundant and ought
to be removed.
```rs
unsafe fn granular_disallow_op_in_unsafe_fn() {
unsafe {
#[deny(unsafe_op_in_unsafe_fn)]
{
unsf();
}
}
}
```
```
error: call to unsafe function is unsafe and requires unsafe block (error E0133)
--> src/main.rs:13:13
|
13 | unsf();
| ^^^^^^ call to unsafe function
|
note: the lint level is defined here
--> src/main.rs:11:16
|
11 | #[deny(unsafe_op_in_unsafe_fn)]
| ^^^^^^^^^^^^^^^^^^^^^^
= note: consult the function's documentation for information on how to avoid undefined behavior
warning: unnecessary `unsafe` block
--> src/main.rs:10:5
|
9 | unsafe fn granular_disallow_op_in_unsafe_fn() {
| --------------------------------------------- because it's nested under this `unsafe` fn
10 | unsafe {
| ^^^^^^ unnecessary `unsafe` block
|
= note: `#[warn(unused_unsafe)]` on by default
```
Here, the intermediate `unsafe` was ignored, even though it contains a unsafe
operation that is not allowed to happen in an `unsafe fn` without an additional `unsafe` block.
Also closures were problematic and the workaround/algorithms used on current
nightly didn’t work properly. (I skipped trying to fully understand what it was
supposed to do, because this PR uses a completely different approach.)
```rs
fn nested() {
unsafe {
unsafe { unsf() }
}
}
```
```
warning: unnecessary `unsafe` block
--> src/main.rs:10:9
|
9 | unsafe {
| ------ because it's nested under this `unsafe` block
10 | unsafe { unsf() }
| ^^^^^^ unnecessary `unsafe` block
|
= note: `#[warn(unused_unsafe)]` on by default
```
vs
```rs
fn nested() {
let _ = || unsafe {
let _ = || unsafe { unsf() };
};
}
```
```
warning: unnecessary `unsafe` block
--> src/main.rs:9:16
|
9 | let _ = || unsafe {
| ^^^^^^ unnecessary `unsafe` block
|
= note: `#[warn(unused_unsafe)]` on by default
warning: unnecessary `unsafe` block
--> src/main.rs:10:20
|
10 | let _ = || unsafe { unsf() };
| ^^^^^^ unnecessary `unsafe` block
```
*note that this warning kind-of suggests that **both** unsafe blocks are redundant*
--------------------------------------------------------------------------------
I also dislike the fact that it always suggests keeping the outermost `unsafe`.
E.g. for
```rs
fn granularity() {
unsafe {
unsafe { unsf() }
unsafe { unsf() }
unsafe { unsf() }
}
}
```
I prefer if `rustc` suggests removing the more-course outer-level `unsafe`
instead of the fine-grained inner `unsafe` blocks, which it currently does on nightly:
```
warning: unnecessary `unsafe` block
--> src/main.rs:10:9
|
9 | unsafe {
| ------ because it's nested under this `unsafe` block
10 | unsafe { unsf() }
| ^^^^^^ unnecessary `unsafe` block
|
= note: `#[warn(unused_unsafe)]` on by default
warning: unnecessary `unsafe` block
--> src/main.rs:11:9
|
9 | unsafe {
| ------ because it's nested under this `unsafe` block
10 | unsafe { unsf() }
11 | unsafe { unsf() }
| ^^^^^^ unnecessary `unsafe` block
warning: unnecessary `unsafe` block
--> src/main.rs:12:9
|
9 | unsafe {
| ------ because it's nested under this `unsafe` block
...
12 | unsafe { unsf() }
| ^^^^^^ unnecessary `unsafe` block
```
--------------------------------------------------------------------------------
Needless to say, this PR addresses all these points. For context, as far as my
understanding goes, the main advantage of skipping inner unsafe blocks was that
a test case like
```rs
fn top_level_used() {
unsafe {
unsf();
unsafe { unsf() }
unsafe { unsf() }
unsafe { unsf() }
}
}
```
should generate some warning because there’s redundant nested `unsafe`, however
every single `unsafe` block _does_ contain some statement that uses it. Of course
this PR doesn’t aim change the warnings on this kind of code example, because
the current behavior, warning on all the inner `unsafe` blocks, makes sense in this case.
As mentioned, during MIR building all the unsafe blocks *are* kept now, and usage
is attributed to them. The way to still generate a warning like
```
warning: unnecessary `unsafe` block
--> src/main.rs:11:9
|
9 | unsafe {
| ------ because it's nested under this `unsafe` block
10 | unsf();
11 | unsafe { unsf() }
| ^^^^^^ unnecessary `unsafe` block
|
= note: `#[warn(unused_unsafe)]` on by default
warning: unnecessary `unsafe` block
--> src/main.rs:12:9
|
9 | unsafe {
| ------ because it's nested under this `unsafe` block
...
12 | unsafe { unsf() }
| ^^^^^^ unnecessary `unsafe` block
warning: unnecessary `unsafe` block
--> src/main.rs:13:9
|
9 | unsafe {
| ------ because it's nested under this `unsafe` block
...
13 | unsafe { unsf() }
| ^^^^^^ unnecessary `unsafe` block
```
in this case is by emitting a `unused_unsafe` warning for all of the `unsafe`
blocks that are _within a **used** unsafe block_.
The previous code had a little HIR traversal already anyways to collect a set of
all the unsafe blocks (in order to afterwards determine which ones are unused
afterwards). This PR uses such a traversal to do additional things including logic
like _always_ warn for an `unsafe` block that’s inside of another **used**
unsafe block. The traversal is expanded to include nested closures in the same go,
this simplifies a lot of things.
The whole logic around `unsafe_op_in_unsafe_fn` is a little complicated, there’s
some test cases of corner-cases in this PR. (The implementation involves
differentiating between whether a used unsafe block was used exclusively by
operations where `allow(unsafe_op_in_unsafe_fn)` was active.) The main goal was
to make sure that code should compile successfully if all the `unused_unsafe`-warnings
are addressed _simultaneously_ (by removing the respective `unsafe` blocks)
no matter how complicated the patterns of `unsafe_op_in_unsafe_fn` being
disallowed and allowed throughout the function are.
--------------------------------------------------------------------------------
One noteworthy design decision I took here: An `unsafe` block
with `allow(unused_unsafe)` **is considered used** for the purposes of
linting about redundant contained unsafe blocks. So while
```rs
fn granularity() {
unsafe { //~ ERROR: unnecessary `unsafe` block
unsafe { unsf() }
unsafe { unsf() }
unsafe { unsf() }
}
}
```
warns for the outer `unsafe` block,
```rs
fn top_level_ignored() {
#[allow(unused_unsafe)]
unsafe {
#[deny(unused_unsafe)]
{
unsafe { unsf() } //~ ERROR: unnecessary `unsafe` block
unsafe { unsf() } //~ ERROR: unnecessary `unsafe` block
unsafe { unsf() } //~ ERROR: unnecessary `unsafe` block
}
}
}
```
warns on the inner ones.
Move ty::print methods to Drop-based scope guards
Primary goal is reducing codegen of the TLS access for each closure, which shaves ~3 seconds of bootstrap time over rustc as a whole.
This was largely just caching the shard value at this point, which is not
particularly useful -- in the use sites the key was being hashed nearby anyway.
Adopt let else in more places
Continuation of #89933, #91018, #91481, #93046, #93590, #94011.
I have extended my clippy lint to also recognize tuple passing and match statements. The diff caused by fixing it is way above 1 thousand lines. Thus, I split it up into multiple pull requests to make reviewing easier. This is the biggest of these PRs and handles the changes outside of rustdoc, rustc_typeck, rustc_const_eval, rustc_trait_selection, which were handled in PRs #94139, #94142, #94143, #94144.
Suggest `impl Trait` return type when incorrectly using a generic return type
Address #85991
When there is a type mismatch error and the return type is generic, and that generic parameter is not used in the function parameters, suggest replacing that generic with the `impl Trait` syntax.
r? `@estebank`
Address #85991
Suggest the `impl Trait` return type syntax if the user tried to return a generic parameter and we get a type mismatch
The suggestion is not emitted if the param appears in the function parameters, and only get the bounds that actually involve `T: ` directly
It also checks whether the generic param is contained in any where bound (where it isn't the self type), and if one is found (like `Option<T>: Send`), it is not suggested.
This also adds `TyS::contains`, which recursively vistits the type and looks if the other type is contained anywhere
Suggest copying trait associated type bounds on lifetime error
Closes#92033
Kind of the most simple suggestion to make - we don't try to be fancy. Turns out, it's still pretty useful (the couple existing tests that trigger this error end up fixed - for this error - upon applying the fix).
r? ``@estebank``
cc ``@nikomatsakis``
Improve comments about type folding/visiting.
I have found this code confusing for years. I've always roughly
understood it, but never exactly. I just made my fourth(?) attempt and
finally cracked it.
This commit improves the comments. In particular, it explicitly
describes how you can't do a custom fold/visit of any type; there are
actually a handful of "types of interest" (e.g. `Ty`, `Predicate`,
`Region`, `Const`) that can be custom folded/visted, and all other types
just get a generic traversal. I think this was the part that eluded me
on all my prior attempts at understanding.
The commit also updates comments to account for some newer changes such
as the fallible/infallible folding distinction, does some minor
reorderings, and moves one `impl` to a better place.
r? `@BoxyUwU`
I have found this code confusing for years. I've always roughly
understood it, but never exactly. I just made my fourth(?) attempt and
finally cracked it.
This commit improves the comments. In particular, it explicitly
describes how you can't do a custom fold/visit of any type; there are
actually a handful of "types of interest" (e.g. `Ty`, `Predicate`,
`Region`, `Const`) that can be custom folded/visted, and all other types
just get a generic traversal. I think this was the part that eluded me
on all my prior attempts at understanding.
The commit also updates comments to account for some newer changes such
as the fallible/infallible folding distinction, does some minor
reorderings, and moves one `impl` to a better place.
Fix inconsistent symbol mangling with -Zverbose
Always skip arguments that are the defaults of their respective
parameters, to avoid generating inconsistent symbols for builds
with `-Zverbose` flag and without it.
Support pretty printing of invalid constants
Make it possible to pretty print invalid constants by introducing a
fallible variant of `destructure_const` and falling back to debug
formatting when it fails.
Closes#93688.
Treat static refs as `mir::ConstantKind::Val`
With the upcoming introduction of Valtrees we want to treat more values as `mir::ConstantKind::Val` directly.
r? `@lcnr`
cc `@oli-obk`
Always skip arguments that are the defaults of their respective
parameters, to avoid generating inconsistent symbols for builds
with `-Zverbose` flag and without it.
Make it possible to pretty print invalid constants by introducing a
fallible variant of `destructure_const` and falling back to debug
formatting when it fails.
Specifically, rename the `Const` struct as `ConstS` and re-introduce `Const` as
this:
```
pub struct Const<'tcx>(&'tcx Interned<ConstS>);
```
This now matches `Ty` and `Predicate` more closely, including using
pointer-based `eq` and `hash`.
Notable changes:
- `mk_const` now takes a `ConstS`.
- `Const` was copy, despite being 48 bytes. Now `ConstS` is not, so need a
we need separate arena for it, because we can't use the `Dropless` one any
more.
- Many `&'tcx Const<'tcx>`/`&Const<'tcx>` to `Const<'tcx>` changes
- Many `ct.ty` to `ct.ty()` and `ct.val` to `ct.val()` changes.
- Lots of tedious sigil fiddling.
The variant names are exported, so we can use them directly (possibly
with a `ty::` qualifier). Lots of places already do this, this commit
just increases consistency.
Specifically, change `Region` from this:
```
pub type Region<'tcx> = &'tcx RegionKind;
```
to this:
```
pub struct Region<'tcx>(&'tcx Interned<RegionKind>);
```
This now matches `Ty` and `Predicate` more closely.
Things to note
- Regions have always been interned, but we haven't been using pointer-based
`Eq` and `Hash`. This is now happening.
- I chose to impl `Deref` for `Region` because it makes pattern matching a lot
nicer, and `Region` can be viewed as just a smart wrapper for `RegionKind`.
- Various methods are moved from `RegionKind` to `Region`.
- There is a lot of tedious sigil changes.
- A couple of types like `HighlightBuilder`, `RegionHighlightMode` now have a
`'tcx` lifetime because they hold a `Ty<'tcx>`, so they can call `mk_region`.
- A couple of test outputs change slightly, I'm not sure why, but the new
outputs are a little better.
Specifically, change `Ty` from this:
```
pub struct Predicate<'tcx> { inner: &'tcx PredicateInner<'tcx> }
```
to this:
```
pub struct Predicate<'tcx>(&'tcx Interned<PredicateS<'tcx>>)
```
where `PredicateInner` is renamed as `PredicateS`.
This (plus a few other minor changes) makes the parallels with `Ty` and
`TyS` much clearer, and makes the uniqueness more explicit.
Specifically, change `Ty` from this:
```
pub type Ty<'tcx> = &'tcx TyS<'tcx>;
```
to this
```
pub struct Ty<'tcx>(Interned<'tcx, TyS<'tcx>>);
```
There are two benefits to this.
- It's now a first class type, so we can define methods on it. This
means we can move a lot of methods away from `TyS`, leaving `TyS` as a
barely-used type, which is appropriate given that it's not meant to
be used directly.
- The uniqueness requirement is now explicit, via the `Interned` type.
E.g. the pointer-based `Eq` and `Hash` comes from `Interned`, rather
than via `TyS`, which wasn't obvious at all.
Much of this commit is boring churn. The interesting changes are in
these files:
- compiler/rustc_middle/src/arena.rs
- compiler/rustc_middle/src/mir/visit.rs
- compiler/rustc_middle/src/ty/context.rs
- compiler/rustc_middle/src/ty/mod.rs
Specifically:
- Most mentions of `TyS` are removed. It's very much a dumb struct now;
`Ty` has all the smarts.
- `TyS` now has `crate` visibility instead of `pub`.
- `TyS::make_for_test` is removed in favour of the static `BOOL_TY`,
which just works better with the new structure.
- The `Eq`/`Ord`/`Hash` impls are removed from `TyS`. `Interned`s impls
of `Eq`/`Hash` now suffice. `Ord` is now partly on `Interned`
(pointer-based, for the `Equal` case) and partly on `TyS`
(contents-based, for the other cases).
- There are many tedious sigil adjustments, i.e. adding or removing `*`
or `&`. They seem to be unavoidable.
make `find_similar_impl_candidates` even fuzzier
continues the good work of `@BGR360` in #92223. I might have overshot a bit and we're now slightly too fuzzy 😅
with this we can now also simplify `simplify_type`, which is nice :3
Make `Res::SelfTy` a struct variant and update docs
I found pattern matching on a `(Option<DefId>, Option<(DefId, bool)>)` to not be super readable, additionally the doc comments on the types in a tuple variant aren't visible anywhere at use sites as far as I can tell (using rust analyzer + vscode)
The docs incorrectly assumed that the `DefId` in `Option<(DefId, bool)>` would only ever be for an impl item and I also found the code examples to be somewhat unclear about which `DefId` was being talked about.
r? `@lcnr` since you reviewed the last PR changing these docs
Improve chalk integration
- Support subtype bounds in chalk lowering
- Handle universes in canonicalization
- Handle type parameters in chalk responses
- Use `chalk_ir::LifetimeData::Empty` for `ty::ReEmpty`
- Remove `ignore-compare-mode-chalk` for tests that no longer hang (they may still fail or ICE)
This is enough to get a hello world program to compile with `-Zchalk` now. Some of the remaining issues that are needed to get Chalk integration working on larger programs are:
- rust-lang/chalk#234
- rust-lang/chalk#548
- rust-lang/chalk#734
- Generators are handled differently in chalk and rustc
r? `@jackh726`
Apply noundef attribute to &T, &mut T, Box<T>, bool
This doesn't handle `char` because it's a bit awkward to distinguish it from `u32` at this point in codegen.
Note that this _does not_ change whether or not it is UB for `&`, `&mut`, or `Box` to point to undef. It only applies to the pointer itself, not the pointed-to memory.
Fixes (partially) #74378.
r? `@nikic` cc `@RalfJung`
This is required to avoid creating large numbers of universes from each
Chalk query, while still having enough universe information for lifetime
errors.
Make all `hir::Map` methods consistently by-value
`hir::Map` only consists of a single reference (as part of the contained `TyCtxt`) anyways, so copying is literally zero overhead compared to passing a reference
Ensure that queries only return Copy types.
This should pervent the perf footgun of returning a result with an expensive `Clone` impl (like a `Vec` of a hash map).
I went for the stupid solution of allocating on an arena everything that was not `Copy`. Some query results could be made Copy easily, but I did not really investigate.
Refactor query system to maintain a global job id counter
This replaces the per-shard counters with a single global counter, simplifying
the JobId struct down to just a u64 and removing the need to pipe a DepKind
generic through a bunch of code. The performance implications on non-parallel
compilers are likely minimal (this switches to `Cell<u64>` as the backing
storage over a `u64`, but the latter was already inside a `RefCell` so it's not
really a significance divergence). On parallel compilers, the cost of a single
global u64 counter may be more significant: it adds a serialization point in
theory. On the other hand, we can imagine changing the counter to have a
thread-local component if it becomes worrisome or some similar structure.
The new design is sufficiently simpler that it warrants the potential for slight
changes down the line if/when we get parallel compilation to be more of a
default.
A u64 counter, instead of u32 (the old per-shard width), is chosen to avoid
possibly overflowing it and causing problems; it is effectively impossible that
we would overflow a u64 counter in this context.
This replaces the per-shard counters with a single global counter, simplifying
the JobId struct down to just a u64 and removing the need to pipe a DepKind
generic through a bunch of code. The performance implications on non-parallel
compilers are likely minimal (this switches to `Cell<u64>` as the backing
storage over a `u64`, but the latter was already inside a `RefCell` so it's not
really a significance divergence). On parallel compilers, the cost of a single
global u64 counter may be more significant: it adds a serialization point in
theory. On the other hand, we can imagine changing the counter to have a
thread-local component if it becomes worrisome or some similar structure.
The new design is sufficiently simpler that it warrants the potential for slight
changes down the line if/when we get parallel compilation to be more of a
default.
A u64 counter, instead of u32 (the old per-shard width), is chosen to avoid
possibly overflowing it and causing problems; it is effectively impossible that
we would overflow a u64 counter in this context.
Add more *-unwind ABI variants
The following *-unwind ABIs are now supported:
- "C-unwind"
- "cdecl-unwind"
- "stdcall-unwind"
- "fastcall-unwind"
- "vectorcall-unwind"
- "thiscall-unwind"
- "aapcs-unwind"
- "win64-unwind"
- "sysv64-unwind"
- "system-unwind"
cc `@rust-lang/wg-ffi-unwind`
Lazy type-alias-impl-trait
Previously opaque types were processed by
1. replacing all mentions of them with inference variables
2. memorizing these inference variables in a side-table
3. at the end of typeck, resolve the inference variables in the side table and use the resolved type as the hidden type of the opaque type
This worked okayish for `impl Trait` in return position, but required lots of roundabout type inference hacks and processing.
This PR instead stops this process of replacing opaque types with inference variables, and just keeps the opaque types around.
Whenever an opaque type `O` is compared with another type `T`, we make the comparison succeed and record `T` as the hidden type. If `O` is compared to `U` while there is a recorded hidden type for it, we grab the recorded type (`T`) and compare that against `U`. This makes implementing
* https://github.com/rust-lang/rfcs/pull/2515
much simpler (previous attempts on the inference based scheme were very prone to ICEs and general misbehaviour that was not explainable except by random implementation defined oddities).
r? `@nikomatsakis`
fixes#93411fixes#88236
use `fold_list` in `try_super_fold_with` for `SubstsRef`
split out from #93505 as this by itself is responsible for most of the perf improvements there
r? `@michaelwoerister`
This doesn't handle `char` because it's a bit awkward to distinguish it
from u32 at this point in codegen.
Note that for some types (like `&Struct` and `&mut Struct`),
we already apply `dereferenceable`, which implies `noundef`,
so the IR does not change.
Stabilize `-Z instrument-coverage` as `-C instrument-coverage`
(Tracking issue for `instrument-coverage`: https://github.com/rust-lang/rust/issues/79121)
This PR stabilizes support for instrumentation-based code coverage, previously provided via the `-Z instrument-coverage` option. (Continue supporting `-Z instrument-coverage` for compatibility for now, but show a deprecation warning for it.)
Many, many people have tested this support, and there are numerous reports of it working as expected.
Move the documentation from the unstable book to stable rustc documentation. Update uses and documentation to use the `-C` option.
Addressing questions raised in the tracking issue:
> If/when stabilized, will the compiler flag be updated to -C instrument-coverage? (If so, the -Z variant could also be supported for some time, to ease migrations for existing users and scripts.)
This stabilization PR updates the option to `-C` and keeps the `-Z` variant to ease migration.
> The Rust coverage implementation depends on (and automatically turns on) -Z symbol-mangling-version=v0. Will stabilizing this feature depend on stabilizing v0 symbol-mangling first? If so, what is the current status and timeline?
This stabilization PR depends on https://github.com/rust-lang/rust/pull/90128 , which stabilizes `-C symbol-mangling-version=v0` (but does not change the default symbol-mangling-version).
> The Rust coverage implementation implements the latest version of LLVM's Coverage Mapping Format (version 4), which forces a dependency on LLVM 11 or later. A compiler error is generated if attempting to compile with coverage, and using an older version of LLVM.
Given that LLVM 13 has now been released, requiring LLVM 11 for coverage support seems like a reasonable requirement. If people don't have at least LLVM 11, nothing else breaks; they just can't use coverage support. Given that coverage support currently requires a nightly compiler and LLVM 11 or newer, allowing it on a stable compiler built with LLVM 11 or newer seems like an improvement.
The [tracking issue](https://github.com/rust-lang/rust/issues/79121) and the [issue label A-code-coverage](https://github.com/rust-lang/rust/labels/A-code-coverage) link to a few open issues related to `instrument-coverage`, but none of them seem like showstoppers. All of them seem like improvements and refinements we can make after stabilization.
The original `-Z instrument-coverage` support went through a compiler-team MCP at https://github.com/rust-lang/compiler-team/issues/278 . Based on that, `@pnkfelix` suggested that this needed a stabilization PR and a compiler-team FCP.
Fix ret > 1 bound if shadowed by const
Prior to a change, it would only look at types in bounds. When it started looking for consts,
shadowing type variables with a const would cause an ICE, so now defer looking at consts only if
there are no types present.
cc ``````@compiler-errors``````
Should Fix#93553
Prior to a change, it would only look at types in bounds. When it started looking for consts,
shadowing type variables with a const would cause an ICE, so now defer looking at consts only if
there are no types present.
Temporary fix for the layout of aligned enums
Fix for the issue #92464
~~I was after this issue for quite some time now, I have a temporary fix for it.
I think the current problem is [here](e75f96763f/compiler/rustc_middle/src/ty/layout.rs (L1305-L1310)) created `tag` value might be wrong, because when I checked `min` and `max` values it's always between 0..1, which results in wrong size comparison in a few lines down below.
I think `min` and `max` values don't take `#[repr(aligned(8))]` into consideration and just act from base values assigned inside the enum. If what I am saying is true, aligned enums were created with the wrong layout for some time.~~
~~As stated in the title this is only a temporary fix and I think this needs further investigation, if someone wants to mentor it I would like to work on that too.~~ 😸
**Edit: Weird some tests fail now going to close this for now...**
**Edit2: I made it work again.**
I think I figured out the main problem of the issue, layout types of aligned enums with custom discriminant types were not handled, which resulted in confusing(such as this issue) behavior down the line, this is a kinda hacky fix for the issue.
by using an opaque type obligation to bubble up comparisons between opaque types and other types
Also uses proper obligation causes so that the body id works, because out of some reason nll uses body ids for logic instead of just diagnostics.
Return an indexmap in `all_local_trait_impls` query
The data structure previously used here required that `DefId` be `Ord`. As part of #90317, we do not want `DefId` to implement `Ord`.
Fix two incorrect "it's" (typos in comments)
Found one of these while reading the documentation online. The other came up because it's in the same file.
Make dead code check a query.
Dead code check is run for each invocation of the compiler, even if no modifications were involved.
This PR makes dead code check a query keyed on the module. This allows to skip the check when a module has not changed.
To perform this, a query `live_symbols_and_ignored_derived_traits` is introduced to encapsulate the global analysis of finding live symbols. The second query `check_mod_deathness` outputs diagnostics for each module based on this first query's results.
Continue work on associated const equality
This actually implements some more complex logic for assigning associated consts to values.
Inside of projection candidates, it now defers to a separate function for either consts or
types. To reduce amount of code, projections are now generic over T, where T is either a Type or
a Const. I can add some comments back later, but this was the fastest way to implement it.
It also now finds the correct type of consts in type_of.
---
The current main TODO is finding the const of the def id for the LeafDef.
Right now it works if the function isn't called, but once you use the trait impl with the bound it fails inside projection.
I was hoping to get some help in getting the `&'tcx ty::Const<'tcx>`, in addition to a bunch of other `todo!()`s which I think may not be hit.
r? `@oli-obk`
Updates #92827
rustc_errors: only box the `diagnostic` field in `DiagnosticBuilder`.
I happened to need to do the first change (replacing `allow_suggestions` with equivalent functionality on `Diagnostic` itself) as part of a larger change, and noticed that there's only two fields left in `DiagnosticBuilderInner`.
So with this PR, instead of a single pointer, `DiagnosticBuilder` is two pointers, which should work just as well for passing *it* by value (and may even work better wrt some operations, though probably not by much).
But anything that was already taking advantage of `DiagnosticBuilder` being a single pointer, and wrapping it further (e.g. `Result<T, DiagnosticBuilder>` w/ non-ZST `T`), ~~will probably see a slowdown~~, so I want to do a perf run before even trying to propose this.
Store def_id_to_hir_id as variant in hir_owner.
If hir_owner is Owner(_), the LocalDefId is pointing to an owner, so the ItemLocalId is 0.
If the HIR node does not exist, we store Phantom.
Otherwise, we store the HirId associated to the LocalDefId.
Related to #89278
r? `@oli-obk`
Add note suggesting that predicate may be satisfied, but is not `const`
Not sure if we should be printing this in addition to, or perhaps _instead_ of the help message:
```
help: the trait `~const Add` is not implemented for `NonConstAdd`
```
Also added `ParamEnv::is_const` and `PolyTraitPredicate::is_const_if_const` and, in a separate commit, used those in other places instead of `== hir::Constness::Const`, etc.
r? ````@fee1-dead````
If hir_owner is Owner(_), the LocalDefId is pointing to an owner, so the ItemLocalId is 0.
If the HIR node does not exist, we store Phantom.
Otherwise, we store the HirId associated to the LocalDefId.
Store a `Symbol` instead of an `Ident` in `AssocItem`
This is the same idea as #92533, but for `AssocItem` instead
of `VariantDef`/`FieldDef`.
With this change, we no longer have any uses of
`#[stable_hasher(project(...))]`
Check `const Drop` impls considering `~const` Bounds
This PR adds logic to trait selection to account for `~const` bounds in custom `impl const Drop` for types, elaborates the `const Drop` check in `rustc_const_eval` to check those bounds, and steals some drop linting fixes from #92922, thanks `@DrMeepster.`
r? `@fee1-dead` `@oli-obk` <sup>(edit: guess I can't request review from two people, lol)</sup>
since each of you wrote and reviewed #88558, respectively.
Since the logic here is more complicated than what existed, it's possible that this is a perf regression. But it works correctly with tests, and that makes me happy.
Fixes#92881
rustc_lint: Some early linting refactorings
The first one removes and renames some fields and methods from `EarlyContext`.
The second one uses the set of registered tools (for tool attributes and tool lints) in a more centralized way.
The third one removes creation of a fake `ast::Crate` from `fn pre_expansion_lint`.
Pre-expansion linting is done with per-module granularity on freshly loaded modules, and it previously synthesized an `ast::Crate` to visit non-root modules, now they are visited as modules.
The node ID used for pre-expansion linting is also made more precise (the loaded module ID is used).
Make `Decodable` and `Decoder` infallible.
`Decoder` has two impls:
- opaque: this impl is already partly infallible, i.e. in some places it
currently panics on failure (e.g. if the input is too short, or on a
bad `Result` discriminant), and in some places it returns an error
(e.g. on a bad `Option` discriminant). The number of places where
either happens is surprisingly small, just because the binary
representation has very little redundancy and a lot of input reading
can occur even on malformed data.
- json: this impl is fully fallible, but it's only used (a) for the
`.rlink` file production, and there's a `FIXME` comment suggesting it
should change to a binary format, and (b) in a few tests in
non-fundamental ways. Indeed #85993 is open to remove it entirely.
And the top-level places in the compiler that call into decoding just
abort on error anyway. So the fallibility is providing little value, and
getting rid of it leads to some non-trivial performance improvements.
Much of this PR is pretty boring and mechanical. Some notes about
a few interesting parts:
- The commit removes `Decoder::{Error,error}`.
- `InternIteratorElement::intern_with`: the impl for `T` now has the same
optimization for small counts that the impl for `Result<T, E>` has,
because it's now much hotter.
- Decodable impls for SmallVec, LinkedList, VecDeque now all use
`collect`, which is nice; the one for `Vec` uses unsafe code, because
that gave better perf on some benchmarks.
r? `@bjorn3`
`Decoder` has two impls:
- opaque: this impl is already partly infallible, i.e. in some places it
currently panics on failure (e.g. if the input is too short, or on a
bad `Result` discriminant), and in some places it returns an error
(e.g. on a bad `Option` discriminant). The number of places where
either happens is surprisingly small, just because the binary
representation has very little redundancy and a lot of input reading
can occur even on malformed data.
- json: this impl is fully fallible, but it's only used (a) for the
`.rlink` file production, and there's a `FIXME` comment suggesting it
should change to a binary format, and (b) in a few tests in
non-fundamental ways. Indeed #85993 is open to remove it entirely.
And the top-level places in the compiler that call into decoding just
abort on error anyway. So the fallibility is providing little value, and
getting rid of it leads to some non-trivial performance improvements.
Much of this commit is pretty boring and mechanical. Some notes about
a few interesting parts:
- The commit removes `Decoder::{Error,error}`.
- `InternIteratorElement::intern_with`: the impl for `T` now has the same
optimization for small counts that the impl for `Result<T, E>` has,
because it's now much hotter.
- Decodable impls for SmallVec, LinkedList, VecDeque now all use
`collect`, which is nice; the one for `Vec` uses unsafe code, because
that gave better perf on some benchmarks.
I have found this code very confusing at times. This commit clarifies
things.
In particular, the commit explains the requirements that the `Borrow`
impls put on the `Eq` and `Hash` impls, which are non-obvious. And it
puts the `Borrow` impls first, since they force `Eq` and `Hash` to have
particular forms.
The commit also notes `TyS`'s uniqueness requirements.
Rollup of 17 pull requests
Successful merges:
- #91032 (Introduce drop range tracking to generator interior analysis)
- #92856 (Exclude "test" from doc_auto_cfg)
- #92860 (Fix errors on blanket impls by ignoring the children of generated impls)
- #93038 (Fix star handling in block doc comments)
- #93061 (Only suggest adding `!` to expressions that can be macro invocation)
- #93067 (rustdoc mobile: fix scroll offset when jumping to internal id)
- #93086 (Add tests to ensure that `let_chains` works with `if_let_guard`)
- #93087 (Fix src/test/run-make/raw-dylib-alt-calling-convention)
- #93091 (⬆ chalk to 0.76.0)
- #93094 (src/test/rustdoc-json: Check for `struct_field`s in `variant_tuple_struct.rs`)
- #93098 (Show a more informative panic message when `DefPathHash` does not exist)
- #93099 (rustdoc: auto create output directory when "--output-format json")
- #93102 (Pretty printer algorithm revamp step 3)
- #93104 (Support --bless for pp-exact pretty printer tests)
- #93114 (update comment for `ensure_monomorphic_enough`)
- #93128 (Add script to prevent point releases with same number as existing ones)
- #93136 (Backport the 1.58.1 release notes to master)
Failed merges:
r? `@ghost`
`@rustbot` modify labels: rollup
Show a more informative panic message when `DefPathHash` does not exist
This should hopefully make it easier to debug incremental compilation
bugs like #93096 without affecting performance.
Introduce drop range tracking to generator interior analysis
This PR addresses cases such as this one from #57478:
```rust
struct Foo;
impl !Send for Foo {}
let _: impl Send = || {
let guard = Foo;
drop(guard);
yield;
};
```
Previously, the `generator_interior` pass would unnecessarily include the type `Foo` in the generator because it was not aware of the behavior of `drop`. We fix this issue by introducing a drop range analysis that finds portions of the code where a value is guaranteed to be dropped. If a value is dropped at all suspend points, then it is no longer included in the generator type. Note that we are using "dropped" in a generic sense to include any case in which a value has been moved. That is, we do not only look at calls to the `drop` function.
There are several phases to the drop tracking algorithm, and we'll go into more detail below.
1. Use `ExprUseVisitor` to find values that are consumed and borrowed.
2. `DropRangeVisitor` uses consume and borrow information to gather drop and reinitialization events, as well as build a control flow graph.
3. We then propagate drop and reinitialization information through the CFG until we reach a fix point (see `DropRanges::propagate_to_fixpoint`).
4. When recording a type (see `InteriorVisitor::record`), we check the computed drop ranges to see if that value is definitely dropped at the suspend point. If so, we skip including it in the type.
## 1. Use `ExprUseVisitor` to find values that are consumed and borrowed.
We use `ExprUseVisitor` to identify the places where values are consumed. We track both the `hir_id` of the value, and the `hir_id` of the expression that consumes it. For example, in the expression `[Foo]`, the `Foo` is consumed by the array expression, so after the array expression we can consider the `Foo` temporary to be dropped.
In this process, we also collect values that are borrowed. The reason is that the MIR transform for generators conservatively assumes anything borrowed is live across a suspend point (see `rustc_mir_transform::generator::locals_live_across_suspend_points`). We match this behavior here as well.
## 2. Gather drop events, reinitialization events, and control flow graph
After finding the values of interest, we perform a post-order traversal over the HIR tree to find the points where these values are dropped or reinitialized. We use the post-order index of each event because this is how the existing generator interior analysis refers to the position of suspend points and the scopes of variables.
During this traversal, we also record branching and merging information to handle control flow constructs such as `if`, `match`, and `loop`. This is necessary because values may be dropped along some control flow paths but not others.
## 3. Iterate to fixed point
The previous pass found the interesting events and locations, but now we need to find the actual ranges where things are dropped. Upon entry, we have a list of nodes ordered by their position in the post-order traversal. Each node has a set of successors. For each node we additionally keep a bitfield with one bit per potentially consumed value. The bit is set if we the value is dropped along all paths entering this node.
To compute the drop information, we first reverse the successor edges to find each node's predecessors. Then we iterate through each node, and for each node we set its dropped value bitfield to the intersection of all incoming dropped value bitfields.
If any bitfield for any node changes, we re-run the propagation loop again.
## 4. Ignore dropped values across suspend points
At this point we have a data structure where we can ask whether a value is guaranteed to be dropped at any post order index for the HIR tree. We use this information in `InteriorVisitor` to check whether a value in question is dropped at a particular suspend point. If it is, we do not include that value's type in the generator type.
Note that we had to augment the region scope tree to include all yields in scope, rather than just the last one as we did before.
r? `@nikomatsakis`
improve `_` constants in item signature handling
removing the "type" from the error messages does slightly worsen the error messages for types, but figuring out whether the placeholder is for a type or a constant and correctly dealing with that seemed fairly difficult to me so I took the easy way out ✨ Imo the error message is still clear enough.
r? `@BoxyUwU` cc `@estebank`
- Also rename a trivial_const_drop to match style of other functions in
the util module.
- Also add a test for `const Drop` that doesn't depend on a `~const`
bound.
- Also comment a bit why we remove the const bound during dropck impl
check.
This is the same idea as #92533, but for `AssocItem` instead
of `VariantDef`/`FieldDef`.
With this change, we no longer have any uses of
`#[stable_hasher(project(...))]`
Remove some unused ordering derivations based on `DefId`
Like #93018, this removes some unused/unneeded ordering derivations as part of ongoing work on #90317. Here, these changes are aimed at making https://github.com/rust-lang/rust/pull/90749 easier to review, test, and merge.
r? `@cjgillot`
Formally implement let chains
## Let chains
My longest and hardest contribution since #64010.
Thanks to `@Centril` for creating the RFC and special thanks to `@matthewjasper` for helping me since the beginning of this journey. In fact, `@matthewjasper` did much of the complicated MIR stuff so it's true to say that this feature wouldn't be possible without him. Thanks again `@matthewjasper!`
With the changes proposed in this PR, it will be possible to chain let expressions along side local variable declarations or ordinary conditional expressions. In other words, do much of what the `if_chain` crate already does.
## Other considerations
* `if let guard` and `let ... else` features need special care and should be handled in a following PR.
* Irrefutable patterns are allowed within a let chain context
* ~~Three Clippy lints were already converted to start dogfooding and help detect possible corner cases~~
cc #53667
Directly use ConstValue for single literals in blocks
Addresses the minimal repro in https://github.com/rust-lang/rust/issues/92186, but doesn't fix the underlying problem (which would be solved by solving the anon subst problem afaict).
I do, however, think that it makes sense in general to treat single literals in anon blocks as const values directly, especially in light of the problem that the issue refers to (anon const evaluation being postponed until infer variables in substs can be resolved, which was introduced by https://github.com/rust-lang/rust/pull/90023), i.e. while we do get warnings for those unnecessary braces, we should try to avoid errors caused by those braces if possible.
Fix ICEs related to `Deref<Target=[T; N]>` on newtypes
1. Stash a const infer's type into the canonical var during canonicalization, so we can recreate the fresh const infer with that same type.
For example, given `[T; _]` we know `_` is a `usize`. If we go from infer => canonical => infer, we shouldn't forget that variable is a usize.
Fixes#92626Fixes#83704
2. Don't stash the autoderef'd slice type that we get from method lookup, but instead recreate it during method confirmation. We need to do this because the type we receive back after picking the method references a type variable that does not exist after probing is done.
Fixes#92637
... A better solution for the second issue would be to actually _properly_ implement `Deref` for `[T; N]` instead of fixing this autoderef hack to stop leaking inference variables. But I actually looked into this, and there are many complications with const impls.
Replace use of `ty()` on term and use it in more places. This will allow more flexibility in the
future, but slightly worried it allows items which are consts which only accept types.
Implement `#[rustc_must_implement_one_of]` attribute
This PR adds a new attribute — `#[rustc_must_implement_one_of]` that allows changing the "minimal complete definition" of a trait. It's similar to GHC's minimal `{-# MINIMAL #-}` pragma, though `#[rustc_must_implement_one_of]` is weaker atm.
Such attribute was long wanted. It can be, for example, used in `Read` trait to make transitions to recently added `read_buf` easier:
```rust
#[rustc_must_implement_one_of(read, read_buf)]
pub trait Read {
fn read(&mut self, buf: &mut [u8]) -> Result<usize> {
let mut buf = ReadBuf::new(buf);
self.read_buf(&mut buf)?;
Ok(buf.filled_len())
}
fn read_buf(&mut self, buf: &mut ReadBuf<'_>) -> Result<()> {
default_read_buf(|b| self.read(b), buf)
}
}
impl Read for Ty0 {}
//^ This will fail to compile even though all `Read` methods have default implementations
// Both of these will compile just fine
impl Read for Ty1 {
fn read(&mut self, buf: &mut [u8]) -> Result<usize> { /* ... */ }
}
impl Read for Ty2 {
fn read_buf(&mut self, buf: &mut ReadBuf<'_>) -> Result<()> { /* ... */ }
}
```
For now, this is implemented as an internal attribute to start experimenting on the design of this feature. In the future we may want to extend it:
- Allow arbitrary requirements like `a | (b & c)`
- Allow multiple requirements like
- ```rust
#[rustc_must_implement_one_of(a, b)]
#[rustc_must_implement_one_of(c, d)]
```
- Make it appear in rustdoc documentation
- Change the syntax?
- Etc
Eventually, we should make an RFC and make this (or rather similar) attribute public.
---
I'm fairly new to compiler development and not at all sure if the implementation makes sense, but at least it passes tests :)
ProjectionPredicate should be able to handle both associated types and consts so this adds the
first step of that. It mainly just pipes types all the way down, not entirely sure how to handle
consts, but hopefully that'll come with time.
Replace `NestedVisitorMap` with generic `NestedFilter`
This is an attempt to make the `intravisit::Visitor` API simpler and "more const" with regard to nested visiting.
With this change, `intravisit::Visitor` does not visit nested things by default, unless you specify `type NestedFilter = nested_filter::OnlyBodies` (or `All`). `nested_visit_map` returns `Self::Map` instead of `NestedVisitorMap<Self::Map>`. It panics by default (unreachable if `type NestedFilter` is omitted).
One somewhat trixty thing here is that `nested_filter::{OnlyBodies, All}` live in `rustc_middle` so that they may have `type Map = map::Map` and so that `impl Visitor`s never need to specify `type Map` - it has a default of `Self::NestedFilter::Map`.
Remove deprecated LLVM-style inline assembly
The `llvm_asm!` was deprecated back in #87590 1.56.0, with intention to remove
it once `asm!` was stabilized, which already happened in #91728 1.59.0. Now it
is time to remove `llvm_asm!` to avoid continued maintenance cost.
Closes#70173.
Closes#92794.
Closes#87612.
Closes#82065.
cc `@rust-lang/wg-inline-asm`
r? `@Amanieu`
Link impl items to corresponding trait items in late resolver.
Hygienically linking trait impl items to declarations in the trait can be done directly by the late resolver. In fact, it is already done to diagnose unknown items.
This PR uses this resolution work and stores the `DefId` of the trait item in the HIR. This avoids having to do this resolution manually later.
r? `@matthewjasper`
Related to #90639. The added `trait_item_id` field can be moved to `ImplItemRef` to be used directly by your PR.
Prefer projection candidates instead of param_env candidates for Sized predicates
Fixes#89352
Also includes some drive by logging and verbose printing changes that I found useful when debugging this, but I can remove this if needed.
This is a little hacky - but imo no more than the rest of `candidate_should_be_dropped_in_favor_of`. Importantly, in a Chalk-like world, both candidates should be completely compatible.
r? ```@nikomatsakis```
Closure capture cleanup & refactor
Follow up of #89648
Each commit is self-contained and the rationale/changes are documented in the commit message, so it's advisable to review commit by commit.
The code is significantly cleaner (at least IMO), but that could have some perf implication, so I'd suggest a perf run.
r? `@wesleywiser`
cc `@arora-aman`
[code coverage] Fix missing dead code in modules that are never called
The issue here is that the logic used to determine which CGU to put the dead function stubs in doesn't handle cases where a module is never assigned to a CGU (which is what happens when all of the code in the module is dead).
The partitioning logic also caused issues in #85461 where inline functions were duplicated into multiple CGUs resulting in duplicate symbols.
This commit fixes the issue by removing the complex logic used to assign dead code stubs to CGUs and replaces it with a much simpler model: we pick one CGU to hold all the dead code stubs. We pick a CGU which has exported items which increases the likelihood the linker won't throw away our dead functions and we pick the smallest to minimize the impact on compilation times for crates with very large CGUs.
Fixes#91661Fixes#86177Fixes#85718Fixes#79622
r? ```@tmandry```
cc ```@richkadel```
This PR is not urgent so please don't let it interrupt your holidays! 🎄🎁
The field is also renamed from `ident` to `name. In most cases,
we don't actually need the `Span`. A new `ident` method is added
to `VariantDef` and `FieldDef`, which constructs the full `Ident`
using `tcx.def_ident_span()`. This method is used in the cases
where we actually need an `Ident`.
This makes incremental compilation properly track changes
to the `Span`, without all of the invalidations caused by storing
a `Span` directly via an `Ident`.
Normalize struct tail type when checking Pointee trait
Let's go ahead and implement the FIXMEs by properly normalizing the struct-tail type when satisfying a Pointee obligation. This should fix the ICE when we try to calculate a layout depending on `<Ty as Pointee>::Metadata` later.
Fixes#92128Fixes#92577
Additionally, mark the obligation as ambiguous if there are any infer types in that struct-tail type. This has the effect of causing `<_ as Pointee>::Metadata` to be properly replaced with an infer variable ([here](https://github.com/rust-lang/rust/blob/master/compiler/rustc_trait_selection/src/traits/project.rs#L813)) and registered as an obligation... this turns out to be very important in unifying function parameters with formals that are assoc types.
Fixes#91446
Ensure that `Fingerprint` caching respects hashing configuration
Fixes#92266
In some `HashStable` impls, we use a cache to avoid re-computing
the same `Fingerprint` from the same structure (e.g. an `AdtDef`).
However, the `StableHashingContext` used can be configured to
perform hashing in different ways (e.g. skipping `Span`s). This
configuration information is not included in the cache key,
which will cause an incorrect `Fingerprint` to be used if
we hash the same structure with different `StableHashingContext`
settings.
To fix this, the configuration settings of `StableHashingContext`
are split out into a separate `HashingControls` struct. This
struct is used as part of the cache key, ensuring that our caches
always produce the correct result for the given settings.
With this in place, we now turn off `Span` hashing during the
entire process of computing the hash included in legacy symbols.
This current has no effect, but will matter when a future PR
starts hashing more `Span`s that we currently skip.
Mak DefId to AccessLevel map in resolve for export
hir_id to accesslevel in resolve and applied in privacy
using local def id
removing tracing probes
making function not recursive and adding comments
Move most of Exported/Public res to rustc_resolve
moving public/export res to resolve
fix missing stability attributes in core, std and alloc
move code to access_levels.rs
return for some kinds instead of going through them
Export correctness, macro changes, comments
add comment for import binding
add comment for import binding
renmae to access level visitor, remove comments, move fn as closure, remove new_key
fmt
fix rebase
fix rebase
fmt
fmt
fix: move macro def to rustc_resolve
fix: reachable AccessLevel for enum variants
fmt
fix: missing stability attributes for other architectures
allow unreachable pub in rustfmt
fix: missing impl access level + renaming export to reexport
Missing impl access level was found thanks to a test in clippy
rustdoc: Introduce a resolver cache for sharing data between early doc link resolution and later passes
The refactoring parts of https://github.com/rust-lang/rust/pull/88679, shouldn't cause any slowdowns.
r? `@jyn514`
Region info is completely unnecessary for upvar capture kind computation
and is only needed to create the final upvar tuple ty. Doing so makes
creation of UpvarCapture very cheap and expose further cleanup opportunity.
Fixes#92266
In some `HashStable` impls, we use a cache to avoid re-computing
the same `Fingerprint` from the same structure (e.g. an `AdtDef`).
However, the `StableHashingContext` used can be configured to
perform hashing in different ways (e.g. skipping `Span`s). This
configuration information is not included in the cache key,
which will cause an incorrect `Fingerprint` to be used if
we hash the same structure with different `StableHashingContext`
settings.
To fix this, the configuration settings of `StableHashingContext`
are split out into a separate `HashingControls` struct. This
struct is used as part of the cache key, ensuring that our caches
always produce the correct result for the given settings.
With this in place, we now turn off `Span` hashing during the
entire process of computing the hash included in legacy symbols.
This current has no effect, but will matter when a future PR
starts hashing more `Span`s that we currently skip.
Remove `NullOp::Box`
Follow up of #89030 and MCP rust-lang/compiler-team#460.
~1 month later nothing seems to be broken, apart from a small regression that #89332 (1aac85bb716c09304b313d69d30d74fe7e8e1a8e) shows could be regained by remvoing the diverging path, so it shall be safe to continue and remove `NullOp::Box` completely.
r? `@jonas-schievink`
`@rustbot` label T-compiler
Continue supporting -Z instrument-coverage for compatibility for now,
but show a deprecation warning for it.
Update uses and documentation to use the -C option.
Move the documentation from the unstable book to stable rustc
documentation.
Instead of special-casing mutable pointers/references, we
now support general generic types (currently, we handle
`ty::Ref`, `ty::RawPtr`, and `ty::Adt`)
When a `ty::Adt` is involved, we show an additional note
explaining which of the type's generic parameters is
invariant (e.g. the `T` in `Cell<T>`). Currently, we don't
explain *why* a particular generic parameter ends up becoming
invariant. In the general case, this could require printing
a long 'backtrace' of types, so doing this would be
more suitable for a follow-up PR.
We still only handle the case where our variance switches
to `ty::Invariant`.
rustc_metadata: Encode list of all crate's traits into metadata
While working on https://github.com/rust-lang/rust/pull/88679 I noticed that rustdoc is casually doing something quite expensive, something that is used only for error reporting in rustc - collecting all traits from all crates in the dependency tree.
This PR trades some minor extra time spent by metadata encoder in rustc for major gains for rustdoc (and for rustc runs with errors, which execute the `all_traits` query for better diagnostics).
CTFE eval_fn_call: use FnAbi to determine argument skipping and compatibility
This makes use of the `FnAbi` type in CTFE/Miri, which `@eddyb` has been saying for years is what we should do.^^ `FnAbi` is used to
- determine which arguments to skip (rather than the previous heuristic of skipping ZST arguments with the Rust ABI)
- impose further restrictions on whether caller and callee are consistent in how a given argument is passed
I was hoping it would also simplify the code, but that is not the case -- the previous type compatibility checks are still required (AFAIK), only the ZST skipping is gone and that took barely any code. We also need some hacks because `FnAbi` assumes a certain way of implementing `caller_location` (by passing extra arguments), but Miri can just read the caller location from the call stack so it doesn't need those arguments. (The fact that every backend has to separately implement support for these arguments seems suboptimal -- looks like this might have been better implemented on the MIR level.) To avoid having to implement those unnecessary arguments in Miri, we just compute *whether* the argument is present on the caller/callee side, but don't actually pass that argument around.
I have no idea if this looks the way `@eddyb` thinks it should look... but it makes Miri's test suite pass. ;)
One of rustc's tests fails unfortunately (`ui/const-generics/issues/issue-67739.rs`), some const generic code that is evaluated too early -- I think that should raise `TooGeneric` but instead it ICEs. My assumption is this is some FnAbi code that has not been properly tested on polymorphic code, but it might also be me calling that FnAbi code the wrong way.
r? `@oli-obk` `@eddyb`
Fixes https://github.com/rust-lang/rust/issues/56166
Miri PR at https://github.com/rust-lang/miri/pull/1928
Store a `DefId` instead of an `AdtDef` in `AggregateKind::Adt`
The `AggregateKind` enum ends up in the final mir `Body`. Currently,
any changes to `AdtDef` (regardless of how significant they are)
will legitimately cause the overall result of `optimized_mir` to change,
invalidating any codegen re-use involving that mir.
This will get worse once we start hashing the `Span` inside `FieldDef`
(which is itself contained in `AdtDef`).
To try to reduce these kinds of invalidations, this commit changes
`AggregateKind::Adt` to store just the `DefId`, instead of the full
`AdtDef`. This allows the result of `optimized_mir` to be unchanged
if the `AdtDef` changes in a way that doesn't actually affect any
of the MIR we build.
Update chalk to 0.75.0
- Compute flags in `intern_ty`
- Remove `tracing-serde` from `PERMITTED_DEPENDENCIES`
- Bump `tracing-tree` to 0.2.0
- Bump `tracing-subscriber` to 0.3.3
The `AggregateKind` enum ends up in the final mir `Body`. Currently,
any changes to `AdtDef` (regardless of how significant they are)
will legitimately cause the overall result of `optimized_mir` to change,
invalidating any codegen re-use involving that mir.
This will get worse once we start hashing the `Span` inside `FieldDef`
(which is itself contained in `AdtDef`).
To try to reduce these kinds of invalidations, this commit changes
`AggregateKind::Adt` to store just the `DefId`, instead of the full
`AdtDef`. This allows the result of `optimized_mir` to be unchanged
if the `AdtDef` changes in a way that doesn't actually affect any
of the MIR we build.
The issue here is that the logic used to determine which CGU to put the
dead function stubs in doesn't handle cases where a module is never
assigned to a CGU.
The partitioning logic also caused issues in #85461 where inline
functions were duplicated into multiple CGUs resulting in duplicate
symbols.
This commit fixes the issue by removing the complex logic used to assign
dead code stubs to CGUs and replaces it with a much simplier model: we
pick one CGU to hold all the dead code stubs. We pick a CGU which has
exported items which increases the likelihood the linker won't throw
away our dead functions and we pick the smallest to minimize the impact
on compilation times for crates with very large CGUs.
Fixes#86177Fixes#85718Fixes#79622
This makes `Obligation` two words bigger, but avoids allocating a lot of
the time.
I previously tried this in #73983 and it didn't help much, but local
timings look more promising now.
Remove `in_band_lifetimes` from `rustc_middle`
See #91867
This was mostly straightforward. In several places, I take advantage
of the fact that lifetimes are non-hygenic: a macro declares the
'tcx' lifetime, which is then used in types passed in as macro
arguments.
Remove `SymbolStr`
This was originally proposed in https://github.com/rust-lang/rust/pull/74554#discussion_r466203544. As well as removing the icky `SymbolStr` type, it allows the removal of a lot of `&` and `*` occurrences.
Best reviewed one commit at a time.
r? `@oli-obk`
Add user seed to `-Z randomize-layout`
Allows users of -`Z randomize-layout` to provide `-Z layout-seed=<seed>` in order to further randomizing type layout randomization. Extension of [compiler-team/#457](https://github.com/rust-lang/compiler-team/issues/457), allows users to change struct layouts without changing code and hoping that item path hashes change, aiding in detecting layout errors
hir: Do not introduce dummy type names for `extern` blocks in def paths
Use a separate nameless `DefPathData` variant instead.
Extracted from https://github.com/rust-lang/rust/pull/91795.
Implement normalize_erasing_regions queries in terms of 'try' version
Attempt to lessen performance regression caused by https://github.com/rust-lang/rust/pull/91255
r? `@jackh726`
See #91867
This was mostly straightforward. In several places, I take advantage
of the fact that lifetimes are non-hygenic: a macro declares the
'tcx' lifetime, which is then used in types passed in as macro
arguments.
extend `simplify_type`
might cause a slight perf inprovement and imo more accurately represents what types there are.
considering that I was going to use this in #85048 it seems like we might need this in the future anyways 🤷
Make `TyS::is_suggestable` check for non-suggestable types structually
Not sure if I went overboard checking substs in dyn types, etc. Let me know if I should simplify this function.
Fixes#91832
By changing `as_str()` to take `&self` instead of `self`, we can just
return `&str`. We're still lying about lifetimes, but it's a smaller lie
than before, where `SymbolStr` contained a (fake) `&'static str`!
Stabilize `iter::zip`
Hello all!
As the tracking issue (#83574) for `iter::zip` completed the final commenting period without any concerns being raised, I hereby submit this stabilization PR on the issue.
As the pull request that introduced the feature (#82917) states, the `iter::zip` function is a shorter way to zip two iterators. As it's generally a quality-of-life/ergonomic improvement, it has been integrated into the codebase without any trouble, and has been
used in many places across the rust compiler and standard library since March without any issues.
For more details, I would refer to `@cuviper's` original PR, or the [function's documentation](https://doc.rust-lang.org/std/iter/fn.zip.html).
Tweak errors coming from `for`-loop, `?` and `.await` desugaring
* Suggest removal of `.await` on non-`Future` expression
* Keep track of obligations introduced by desugaring
* Remove span pointing at method for obligation errors coming from desugaring
* Point at called local sync `fn` and suggest making it `async`
```
error[E0277]: `()` is not a future
--> $DIR/unnecessary-await.rs:9:10
|
LL | boo().await;
| -----^^^^^^ `()` is not a future
| |
| this call returns `()`
|
= help: the trait `Future` is not implemented for `()`
help: do not `.await` the expression
|
LL - boo().await;
LL + boo();
|
help: alternatively, consider making `fn boo` asynchronous
|
LL | async fn boo () {}
| +++++
```
Fix#66731.
Stabilise `feature(const_generics_defaults)`
`feature(const_generics_defaults)` is complete implementation wise and has a pretty extensive test suite so I think is ready for stabilisation.
needs stabilisation report and maybe an RFC 😅
r? `@lcnr`
cc `@rust-lang/project-const-generics`
Tweak assoc type obligation spans
* Point at RHS of associated type in obligation span
* Point at `impl` assoc type on projection error
* Reduce verbosity of recursive obligations
* Point at source of binding lifetime obligation
* Tweak "required bound" note
* Tweak "expected... found opaque (return) type" labels
* Point at set type in impl assoc type WF errors
r? `@oli-obk`
This is a(n uncontroversial) subset of #85799.
Point at capture points for non-`'static` reference crossing a `yield` point
```
error[E0759]: `self` has an anonymous lifetime `'_` but it needs to satisfy a `'static` lifetime requirement
--> $DIR/issue-72312.rs:10:24
|
LL | pub async fn start(&self) {
| ^^^^^ this data with an anonymous lifetime `'_`...
...
LL | require_static(async move {
| -------------- ...is required to live as long as `'static` here...
LL | &self;
| ----- ...and is captured here
|
note: `'static` lifetime requirement introduced by this trait bound
--> $DIR/issue-72312.rs:2:22
|
LL | fn require_static<T: 'static>(val: T) -> T {
| ^^^^^^^
error: aborting due to previous error
For more information about this error, try `rustc --explain E0759`.
```
Fix#72312.
Suggest using a temporary variable to fix borrowck errors
Fixes#77834.
In Rust, nesting method calls with both require `&mut` access to `self`
produces a borrow-check error:
error[E0499]: cannot borrow `*self` as mutable more than once at a time
--> src/lib.rs:7:14
|
7 | self.foo(self.bar());
| ---------^^^^^^^^^^-
| | | |
| | | second mutable borrow occurs here
| | first borrow later used by call
| first mutable borrow occurs here
That's because Rust has a left-to-right evaluation order, and the method
receiver is passed first. Thus, the argument to the method cannot then
mutate `self`.
There's an easy solution to this error: just extract a local variable
for the inner argument:
let tmp = self.bar();
self.foo(tmp);
However, the error doesn't give any suggestion of how to solve the
problem. As a result, new users may assume that it's impossible to
express their code correctly and get stuck.
This commit adds a (non-structured) suggestion to extract a local
variable for the inner argument to solve the error. The suggestion uses
heuristics that eliminate most false positives, though there are a few
false negatives (cases where the suggestion should be emitted but is
not). Those other cases can be implemented in a future change.
Improve the readability of `List<T>`.
This commit does the following.
- Expands on some of the things already mentioned in comments.
- Describes the uniqueness assumption, which is critical but wasn't
mentioned at all.
- Rewrites `empty()` into a clearer form, as provided by Daniel
Henry-Mantilla on Zulip.
- Reorders things slightly so that more important things
are higher up, and incidental things are lower down, which makes
reading the code easier.
r? ````@lcnr````
* Point at RHS of associated type in obligation span
* Point at `impl` assoc type on projection error
* Reduce verbosity of recursive obligations
* Point at source of binding lifetime obligation
* Tweak "required bound" note
* Tweak "expected... found opaque (return) type" labels
* Point at set type in impl assoc type WF errors
In Rust, nesting method calls with both require `&mut` access to `self`
produces a borrow-check error:
error[E0499]: cannot borrow `*self` as mutable more than once at a time
--> src/lib.rs:7:14
|
7 | self.foo(self.bar());
| ---------^^^^^^^^^^-
| | | |
| | | second mutable borrow occurs here
| | first borrow later used by call
| first mutable borrow occurs here
That's because Rust has a left-to-right evaluation order, and the method
receiver is passed first. Thus, the argument to the method cannot then
mutate `self`.
There's an easy solution to this error: just extract a local variable
for the inner argument:
let tmp = self.bar();
self.foo(tmp);
However, the error doesn't give any suggestion of how to solve the
problem. As a result, new users may assume that it's impossible to
express their code correctly and get stuck.
This commit adds a (non-structured) suggestion to extract a local
variable for the inner argument to solve the error. The suggestion uses
heuristics that eliminate most false positives, though there are a few
false negatives (cases where the suggestion should be emitted but is
not). Those other cases can be implemented in a future change.
This commit does the following.
- Expands on some of the things already mentioned in comments.
- Describes the uniqueness assumption, which is critical but wasn't
mentioned at all.
- Rewrites `empty()` into a clearer form, as provided by Daniel
Henry-Mantilla on Zulip.
- Reorders things slightly so that more important things
are higher up, and incidental things are lower down, which makes
reading the code easier.
Allow for failure of subst_normalize_erasing_regions in const_eval
Fixes https://github.com/rust-lang/rust/issues/72845
Using associated types that cannot be normalized previously resulted in an ICE. We now allow for normalization failure and return a "TooGeneric" error in that case.
r? ```@RalfJung``` maybe?
Add a MIR pass manager (Taylor's Version)
The final draft of #91386 and #77665.
While the compile-time constraints in #91386 are cool, I decided on a more minimal approach for now. I want to explore phase constraints and maybe relative-ordering constraints in the future, though. This should preserve existing behavior **exactly** (please let me know if it doesn't) while making the following changes to the way we organize things today:
- Each `MirPhase` now corresponds to a single MIR pass. `run_passes` is not responsible for listing the correct MIR phase.
- `run_passes` no longer silently skips passes if the declared MIR phase is greater than or equal to the body's. This has bitten me multiple times. If you want this behavior, you can always branch on `body.phase` yourself.
- If your pass is solely to emit errors, you can use the `MirLint` interface instead, which gets a shared reference to `Body` instead of a mutable one. By differentiating the two, I hope to make it clearer in the short term where lints belong in the pipeline. In the long term perhaps we could enforce this at compile-time?
- MIR is no longer dumped for passes that aren't enabled, or for lints.
I tried to check that `-Zvalidate` still works correctly, since the MIR phase is now updated as soon as the associated pass is done, instead of at the end of all the passes in `run_passes`. However, it looks like `-Zvalidate` is broken with current nightlies anyways 😢 (it spits out a bunch of errors).
cc `@oli-obk` `@wesleywiser`
r? rust-lang/wg-mir-opt
std: Stabilize the `thread_local_const_init` feature
This commit is intended to follow the stabilization disposition of the
FCP that has now finished in #84223. This stabilizes the ability to flag
thread local initializers as `const` expressions which enables the macro
to generate more efficient code for accessing it, notably removing
runtime checks for initialization.
More information can also be found in #84223 as well as the tests where
the feature usage was removed in this PR.
Closes#84223
Keep spans for generics in `#[derive(_)]` desugaring
Keep the spans for generics coming from a `derive`d Item, so that errors
and suggestions have better detail.
Fix#84003.
* Annotate `derive`d spans from the user's code with the appropciate context
* Add `Span::can_be_used_for_suggestion` to query if the underlying span
at the users' code
Rollup of 12 pull requests
Successful merges:
- #89954 (Fix legacy_const_generic doc arguments display)
- #91321 (Handle placeholder regions in NLL type outlive constraints)
- #91329 (Fix incorrect usage of `EvaluatedToOk` when evaluating `TypeOutlives`)
- #91364 (Improve error message for incorrect field accesses through raw pointers)
- #91387 (Clarify and tidy up explanation of E0038)
- #91410 (Move `#![feature(const_precise_live_drops)]` checks earlier in the pipeline)
- #91435 (Improve diagnostic for missing half of binary operator in `if` condition)
- #91444 (disable tests in Miri that take too long)
- #91457 (Add additional test from rust issue number 91068)
- #91460 (Document how `last_os_error` should be used)
- #91464 (Document file path case sensitivity)
- #91466 (Improve the comments in `Symbol::interner`.)
Failed merges:
r? `@ghost`
`@rustbot` modify labels: rollup
Move `#![feature(const_precise_live_drops)]` checks earlier in the pipeline
Should mitigate the issues found during MCP on #73255.
Once this is done, we should clean up the queries a bit, since I think `mir_drops_elaborated_and_const_checked` can be merged back into `mir_promoted`.
Fixes#90770.
cc ``@rust-lang/wg-const-eval``
r? ``@nikomatsakis`` (since they reviewed #71824)
Cleanup: Eliminate ConstnessAnd
This is almost a behaviour-free change and purely a refactoring. "almost" because we appear to be using the wrong ParamEnv somewhere already, and this is now exposed by failing a test using the unstable `~const` feature.
We most definitely need to review all `without_const` and at some point should probably get rid of many of them by using `TraitPredicate` instead of `TraitRef`.
This is a continuation of https://github.com/rust-lang/rust/pull/90274.
r? `@oli-obk`
cc `@spastorino` `@ecstatic-morse`
... if they use arbitrary enum discriminant. Code like
```rust
enum Enum {
Foo = 1,
Bar(),
Baz{}
}
```
seems to be unintentionally allowed so we couldn't disallow them now,
but we could disallow them if arbitrary enum discriminant is used before
1.56 hits stable.
Add support for LLVM coverage mapping format versions 5 and 6
This PR cherry-pick's Swatinem's initial commit in unsubmitted PR #90047.
My additional commit augments Swatinem's great starting point, but adds full support for LLVM
Coverage Mapping Format version 6, conditionally, if compiling with LLVM 13.
Version 6 requires adding the compilation directory when file paths are
relative, and since Rustc coverage maps use relative paths, we should
add the expected compilation directory entry.
Note, however, that with the compilation directory, coverage reports
from `llvm-cov show` can now report file names (when the report includes
more than one file) with the full absolute path to the file.
This would be a problem for test results, but the workaround (for the
rust coverage tests) is to include an additional `llvm-cov show`
parameter: `--compilation-dir=.`
This commit is intended to follow the stabilization disposition of the
FCP that has now finished in #84223. This stabilizes the ability to flag
thread local initializers as `const` expressions which enables the macro
to generate more efficient code for accessing it, notably removing
runtime checks for initialization.
More information can also be found in #84223 as well as the tests where
the feature usage was removed in this PR.
Closes#84223
Take a LocalDefId in expect_*item.
Items and item-likes are always HIR owners.
When trying to find such nodes, there is no ambiguity, the `LocalDefId` and the `HirId::owner` always match.
In such cases, `local_def_id_to_hir_id` does not carry any meaningful information, so we can just skip calling it altogether.
Nothing else makes sense, and there is no "danger" in doing so, as it only does something if there are const bounds, which are unstable. This used to happen implicitly via the inferctxt before, which was much more fragile.
Print associated types on opaque `impl Trait` types
This PR generalizes #91021, printing associated types for all opaque `impl Trait` types instead of just special-casing for future.
before:
```
error[E0271]: type mismatch resolving `<impl Iterator as Iterator>::Item == u32`
```
after:
```
error[E0271]: type mismatch resolving `<impl Iterator<Item = usize> as Iterator>::Item == u32`
```
---
Questions:
1. I'm kinda lost in binders hell with this one. Is all of the `rebind`ing necessary?
2. Is there a map collection type that will give me a stable iteration order? Doesn't seem like TraitRef is Ord, so I can't just sort later..
3. I removed the logic that suppresses printing generator projection types. It creates outputs like this [gist](https://gist.github.com/compiler-errors/d6f12fb30079feb1ad1d5f1ab39a3a8d). Should I put that back?
4. I also added spaces between traits, `impl A+B` -> `impl A + B`. I quite like this change, but is there a good reason to keep it like that?
r? ````@estebank````
Suggestion to wrap inner types using 'allocator_api' in tuple
This PR provides a suggestion to wrap the inner types in tuple when being along with 'allocator_api'.
Closes https://github.com/rust-lang/rust/issues/83250
```rust
fn main() {
let _vec: Vec<u8, _> = vec![]; //~ ERROR use of unstable library feature 'allocator_api'
}
```
```diff
error[E0658]: use of unstable library feature 'allocator_api'
--> $DIR/suggest-vec-allocator-api.rs:2:23
|
LL | let _vec: Vec<u8, _> = vec![];
- | ^
+ | ----^
+ | |
+ | help: consider wrapping the inner types in tuple: `(u8, _)`
|
= note: see issue #32838 <https://github.com/rust-lang/rust/issues/32838> for more information
= help: add `#![feature(allocator_api)]` to the crate attributes to enable
```
Elaborate `Future::Output` when printing opaque `impl Future` type
I would love to see the `Output =` type when printing type errors involving opaque `impl Future`.
[Test code](https://play.rust-lang.org/?version=stable&mode=debug&edition=2021&gist=a800b481edd31575fbcaf5771a9c3678)
Before (cut relevant part of output):
```
note: while checking the return type of the `async fn`
--> /home/michael/test.rs:5:19
|
5 | async fn bar() -> usize {
| ^^^^^ checked the `Output` of this `async fn`, found opaque type
= note: expected type `usize`
found opaque type `impl Future`
```
After:
```
note: while checking the return type of the `async fn`
--> /home/michael/test.rs:5:19
|
5 | async fn bar() -> usize {
| ^^^^^ checked the `Output` of this `async fn`, found opaque type
= note: expected type `usize`
found opaque type `impl Future<Output = usize>`
```
Note the "found opaque type `impl Future<Output = usize>`" in the new output.
----
Questions:
1. We skip printing the output type when it's a projection, since I have been seeing some types like `impl Future<Output = <[static generator@/home/michael/test.rs:2:11: 2:21] as Generator<ResumeTy>>::Return>` which are not particularly helpful and leak implementation detail.
* Am I able to normalize this type within `rustc_middle::ty::print::pretty`? Alternatively, can we normalize it when creating the diagnostic? Otherwise, I'm fine with skipping it and falling back to the old output.
* Should I suppress any other types? I didn't encounter anything other than this generator projection type.
2. Not sure what the formatting of this should be. Do I include spaces in `Output = `?
fix CTFE/Miri simd_insert/extract on array-style repr(simd) types
The changed test would previously fail since `place_index` would just return the only field of `f32x4`, i.e., the array -- rather than *indexing into* the array which is what we have to do.
The new helper methods will also be needed for https://github.com/rust-lang/miri/issues/1912.
r? ``````@oli-obk``````
This function parameter attribute was introduced in https://github.com/rust-lang/rust/pull/44866 as an intermediate step in implementing `impl Trait`, it's not necessary or used anywhere by itself.
Because it's always `'tcx`. In fact, some of them use a mixture of
passed-in `$tcx` and hard-coded `'tcx`, so no other lifetime would even
work.
This makes the code easier to read.
Remove `DropArena`.
Most arena-allocate types that impl `Drop` get their own `TypedArena`, but a
few infrequently used ones share a `DropArena`. This sharing adds complexity
but doesn't help performance or memory usage. Perhaps it was more effective in
the past prior to some other improvements to arenas.
This commit removes `DropArena` and the sharing of arenas via the `few`
attribute of the `arena_types` macro. This change removes over 100 lines of
code and nine uses of `unsafe` (one of which affects the parallel compiler) and
makes the remaining code easier to read.
Most arena-allocate types that impl `Drop` get their own `TypedArena`, but a
few infrequently used ones share a `DropArena`. This sharing adds complexity
but doesn't help performance or memory usage. Perhaps it was more effective in
the past prior to some other improvements to arenas.
This commit removes `DropArena` and the sharing of arenas via the `few`
attribute of the `arena_types` macro. This change removes over 100 lines of
code and nine uses of `unsafe` (one of which affects the parallel compiler) and
makes the remaining code easier to read.
selection deduplicates obligations through a hashset at some point, computing the hashes for ObligationCauseCode
appears to dominate the hashing cost. bodyid + span + discriminant hash hopefully will sufficiently unique
unique enough.
implement rfc-2528 type_changing-struct-update
This PR implement rfc2528-type_changing-struct-update.
The main change process is as follows:
1. Move the processing part of `base_expr` into `check_expr_struct_fields` to avoid returning `remaining_fields` (a relatively complex hash table)
2. Before performing the type consistency check(`check_expr_has_type_or_error`), if the `type_changing_struct_update` feature is set, enter a different processing flow, otherwise keep the original flow
3. In the case of the same structure definition, check each field in `remaining_fields`. If the field in `base_expr` is not the suptype of the field in `adt_ty`, an error(`FeildMisMatch`) will be reported.
The MIR part does not need to be changed, because only the items contained in `remaining_fields` will be extracted from `base_expr` when MIR is generated. This means that fields with different types in `base_expr` will not be used
Updates #86618
cc `@nikomatsakis`
Type inference for inline consts
Fixes#78132Fixes#78174Fixes#81857Fixes#89964
Perform type checking/inference of inline consts in the same context as the outer def, similar to what is currently done to closure.
Doing so would require `closure_base_def_id` of the inline const to return the outer def, and since `closure_base_def_id` can be called on non-local crate (and thus have no HIR available), a new `DefKind` is created for inline consts.
The type of the generated anon const can capture lifetime of outer def, so we couldn't just use the typeck result as the type of the inline const's def. Closure has a similar issue, and it uses extra type params `CK, CS, U` to capture closure kind, input/output signature and upvars. I use a similar approach for inline consts, letting it have an extra type param `R`, and then `typeof(InlineConst<[paremt generics], R>)` would just be `R`. In borrowck region requirements are also propagated to the outer MIR body just like it's currently done for closure.
With this PR, inline consts in expression position are quitely usable now; however the usage in pattern position is still incomplete -- since those does not remain in the MIR borrowck couldn't verify the lifetime there. I have left an ignored test as a FIXME.
Some disucssions can be found on [this Zulip thread](https://rust-lang.zulipchat.com/#narrow/stream/260443-project-const-generics/topic/inline.20consts.20typeck).
cc `````@spastorino````` `````@lcnr`````
r? `````@nikomatsakis`````
`````@rustbot````` label A-inference F-inline_const T-compiler
The only reason to use `abort_if_errors` is when the program is so broken that either:
1. later passes get confused and ICE
2. any diagnostics from later passes would be noise
This is never the case for lints, because the compiler has to be able to deal with `allow`-ed lints.
So it can continue to lint and compile even if there are lint errors.
Rollup of 6 pull requests
Successful merges:
- #90487 (Add a chapter on reading Rustdoc output)
- #90508 (Apply adjustments for field expression even if inaccessible)
- #90627 (Suggest dereference of `Box` when inner type is expected)
- #90642 (use matches!() macro in more places)
- #90646 (type error go brrrrrrrr)
- #90649 (Run reveal_all on MIR when inlining is activated.)
Failed merges:
r? `@ghost`
`@rustbot` modify labels: rollup
type error go brrrrrrrr
Fixes#90444
when we relate something like:
`fn(fn((), (), u32))` with `fn(fn((), (), ()))`
we relate the inner fn ptrs:
`fn((), (), u32)` with `fn((), (), ())`
yielding a `TypeError::ArgumentSorts(_, 2)` which we then use as the `TypeError` for the `fn(fn(..))` which later causes the ICE as the `2` does not correspond to any input or output types in `fn(_)`
r? `@estebank`
Revert "Add rustc lint, warning when iterating over hashmaps"
Fixes perf regressions introduced in https://github.com/rust-lang/rust/pull/90235 by temporarily reverting the relevant PR.
Implement coherence checks for negative trait impls
The main purpose of this PR is to be able to [move Error trait to core](https://github.com/rust-lang/project-error-handling/issues/3).
This feature is necessary to handle the following from impl on box.
```rust
impl From<&str> for Box<dyn Error> { ... }
```
Without having negative traits affect coherence moving the error trait into `core` and moving that `From` impl to `alloc` will cause the from impl to no longer compiler because of a potential future incompatibility. The compiler indicates that `&str` _could_ introduce an `Error` impl in the future, and thus prevents the `From` impl in `alloc` that would cause overlap with `From<E: Error> for Box<dyn Error>`. Adding `impl !Error for &str {}` with the negative trait coherence feature will disable this error by encoding a stability guarantee that `&str` will never implement `Error`, making the `From` impl compile.
We would have this in `alloc`:
```rust
impl From<&str> for Box<dyn Error> {} // A
impl<E> From<E> for Box<dyn Error> where E: Error {} // B
```
and this in `core`:
```rust
trait Error {}
impl !Error for &str {}
```
r? `@nikomatsakis`
This PR was built on top of `@yaahc` PR #85764.
Language team proposal: to https://github.com/rust-lang/lang-team/issues/96
Do not depend on the stored value when trying to cache on disk.
Having different criteria for loading and saving of query results can lead to saved results that may never be loaded.
Since the on-disk cache is discarded as soon as a compilation error is issued, there should not be any need for an exclusion mecanism based on errors.
As a result, the possibility to condition the storage on the value itself does not appear useful.
Remove hir::map::blocks and use FnKind instead
The principal tool is `FnLikeNode`, which is not often used and can be easily implemented using `rustc_hir::intravisit::FnKind`.
Adopt let_else across the compiler
This performs a substitution of code following the pattern:
```
let <id> = if let <pat> = ... { identity } else { ... : ! };
```
To simplify it to:
```
let <pat> = ... { identity } else { ... : ! };
```
By adopting the `let_else` feature (cc #87335).
The PR also updates the syn crate because the currently used version of the crate doesn't support `let_else` syntax yet.
Note: Generally I'm the person who *removes* usages of unstable features from the compiler, not adds more usages of them, but in this instance I think it hopefully helps the feature get stabilized sooner and in a better state. I have written a [comment](https://github.com/rust-lang/rust/issues/87335#issuecomment-944846205) on the tracking issue about my experience and what I feel could be improved before stabilization of `let_else`.
Do not promote values with const drop that need to be dropped
Changes from #88558 allowed using `~const Drop` in constants by
introducing a new `NeedsNonConstDrop` qualif.
The new qualif was also used for promotion purposes, and allowed
promotion to happen for values that needs to be dropped but which
do have a const drop impl.
Since for promoted the drop implementation is never executed,
this lead to observable change in behaviour. For example:
```rust
struct Panic();
impl const Drop for Panic {
fn drop(&mut self) {
panic!();
}
}
fn main() {
let _ = &Panic();
}
```
Restore the use of `NeedsDrop` qualif during promotion to avoid the issue.
Changes from #88558 allowed using `~const Drop` in constants by
introducing a new `NeedsNonConstDrop` qualif.
The new qualif was also used for promotion purposes, and allowed
promotion to happen for values that needs to be dropped but which
do have a const drop impl.
Since for promoted the drop implementation is never executed,
this lead to observable change in behaviour. For example:
```rust
struct Panic();
impl const Drop for Panic {
fn drop(&mut self) {
panic!();
}
}
fn main() {
let _ = &Panic();
}
```
Restore the use of `NeedsDrop` qualif during promotion to avoid the issue.
Index and hash HIR as part of lowering
Part of https://github.com/rust-lang/rust/pull/88186
~Based on https://github.com/rust-lang/rust/pull/88880 (see merge commit).~
Once HIR is lowered, it is later indexed by the `index_hir` query and hashed for `crate_hash`. This PR moves those post-processing steps to lowering itself. As a side objective, the HIR crate data structure is refactored as an `IndexVec<LocalDefId, Option<OwnerInfo<'hir>>>` where `OwnerInfo` stores all the relevant information for an HIR owner.
r? `@michaelwoerister`
cc `@petrochenkov`
rustc_span: `Ident::invalid` -> `Ident::empty`
The equivalent for `Symbol`s was renamed some time ago (`kw::Invalid` -> `kw::Empty`), and it makes sense to do the same thing for `Ident`s as well.
ty::pretty: prevent infinite recursion for `extern crate` paths.
Fixes#55779, fixes#87932.
This fix is based on `@estebank's` idea in https://github.com/rust-lang/rust/issues/55779#issuecomment-614758510 - but instead of trying to get `try_print_visible_def_path_recur`'s cycle detection to work in this case, this PR "just" disables the "visible path" feature when printing the path to an `extern crate`, so that the old recursion chain of `try_print_visible_def_path -> print_def_path -> try_print_visible_def_path`, is now impossible.
Both tests have been confirmed to crash `rustc` because of a stack overflow, without the fix.
polymorphization: shims and predicates
Supersedes #75737 and #75414. This pull request includes up some changes to polymorphization which hadn't landed previously and gets stage2 bootstrapping and the test suite passing when polymorphization is enabled. There are still issues with `type_id` and polymorphization to investigate but this should get polymorphization in a reasonable state to work on.
- #75737 and #75414 both worked but were blocked on having the rest of the test suite pass (with polymorphization enabled) with and without the PRs. It makes more sense to just land these so that the changes are in.
- #75737's changes remove the restriction of `InstanceDef::Item` on polymorphization, so that shims can now be polymorphized. This won't have much of an effect until polymorphization's analysis is more advanced, but it doesn't hurt.
- #75414's changes remove all logic which marks parameters as used based on their presence in predicates - given #75675, this will enable more polymorphization and avoid the symbol clashes that predicate logic previously sidestepped.
- Polymorphization now explicitly checks (and skips) foreign items, this is necessary for stage2 bootstrapping to work when polymorphization is enabled.
- The conditional determining the emission of a note adding context to a post-monomorphization error has been modified. Polymorphization results in `optimized_mir` running for shims during collection where that wouldn't happen previously, some errors are emitted during `optimized_mir` and these were considered post-monomorphization errors with the existing logic (more errors and shims have a `DefId` coming from the std crate, not the local crate), adding a note that resulted in tests failing. It isn't particularly feasible to change where polymorphization runs or prevent it from using `optimized_mir`, so it seemed more reasonable to not change the conditional.
- `characteristic_def_id_of_type` was being invoked during partitioning for self types of impl blocks which had projections that depended on the value of unused generic parameters of a function - this caused a ICE in a debuginfo test. If partitioning is enabled and the instance needs substitution then this is skipped. That test still fails for me locally, but not with an ICE, but it fails in a fresh checkout too, so 🤷♂️.
r? `@lcnr`
This performs a substitution of code following the pattern:
let <id> = if let <pat> = ... { identity } else { ... : ! };
To simplify it to:
let <pat> = ... { identity } else { ... : ! };
By adopting the let_else feature.
Add test cases for unstable variants
Add test cases for doc hidden variants
Move is_doc_hidden to method on TyCtxt
Add unstable variants test to reachable-patterns ui test
Rename reachable-patterns -> omitted-patterns
Add new tier-3 target: armv7-unknown-linux-uclibceabihf
This change adds a new tier-3 target: armv7-unknown-linux-uclibceabihf
This target is primarily used in embedded linux devices where system resources are slim and glibc is deemed too heavyweight. Cross compilation C toolchains are available [here](https://toolchains.bootlin.com/) or via [buildroot](https://buildroot.org).
The change is based largely on a previous PR #79380 with a few minor modifications. The author of that PR was unable to push the PR forward, and graciously allowed me to take it over.
Per the [target tier 3 policy](https://github.com/rust-lang/rfcs/blob/master/text/2803-target-tier-policy.md), I volunteer to be the "target maintainer".
This is my first PR to Rust itself, so I apologize if I've missed things!
Refactor fingerprint reconstruction
This PR replaces can_reconstruct_query_key with fingerprint_style, which returns the style of the fingerprint for that query. This allows us to avoid trying to extract a DefId (or equivalent) from keys which *are* reconstructible because they're () but not as DefIds.
This is done with the goal of fixing -Zdump-dep-graph, which seems to have broken a while ago (I didn't try to bisect). Currently even on a `fn main() {}` file it'll ICE (you need to also pass -Zquery-dep-graph for it to work at all), and this patch indirectly fixes the cause of that ICE. This also adds a test for it continuing to work.
Prevent error reporting from outputting a recursion error if it finds an ambiguous trait impl during suggestions
Closes#89275
This fixes the compiler reporting a recursion error during another already in progress error by trying to make a conversion method suggestion and encounters ambiguous trait implementations that can convert a the original type into a type that can then be recursively converted into itself via another method in the trait.
Updated OverflowError struct to be an enum so I could differentiate between passes - it's no longer a ZST but I don't think that should be a problem as they only generate when there's an error in compiling code anyway
Turn vtable_allocation() into a query
This PR removes the untracked vtable-const-allocation cache from the `tcx` and turns the `vtable_allocation()` method into a query.
The change is pretty straightforward and should be backportable without too much effort.
Fixes https://github.com/rust-lang/rust/issues/89598.
Implement `#[link_ordinal(n)]`
Allows the use of `#[link_ordinal(n)]` with `#[link(kind = "raw-dylib")]`, allowing Rust to link against DLLs that export symbols by ordinal rather than by name. As long as the ordinal matches, the name of the function in Rust is not required to match the name of the corresponding function in the exporting DLL.
Part of #58713.
Introduce `tcx.get_diagnostic_name`
Introduces a "reverse lookup" for diagnostic items. This is mainly intended for `@rust-lang/clippy` which often does a long series of `is_diagnostic_item` calls for the same `DefId`.
r? `@oli-obk`
Consider unfulfilled obligations in binop errors
When encountering a binop where the types would have been accepted, if
all the predicates had been fulfilled, include information about the
predicates and suggest appropriate `#[derive]`s if possible.
Fix#84515.
When encountering a binop where the types would have been accepted, if
all the predicates had been fulfilled, include information about the
predicates and suggest appropriate `#[derive]`s if possible.
Point at trait(s) that needs to be `impl`emented.
Fix bug with query modifier parsing
The previous macro_rules! parsers failed when an additional modifier was added
with ambiguity errors. The error is pretty unclear as to what exactly the cause
here is, but this change simplifies the argument parsing code such that the
error is avoided.
Extracted from other work, and somewhat duplicates 0358edeb5 from #85830, but
this approach seems a little simpler to me. Not technically currently necessary but seems
like a good cleanup.
Consistently use 'supertrait'.
A subset of places referred to 'super-trait', so this changes them
to all use 'supertrait'. This matches 'supertype' and some other
usages. An exception is 'auto-trait' which is consistently used
in that manner.
Remove some feature gates
The first commit removes various feature gates that are unused. The second commit replaces some `Fn` implementations with `Iterator` implementations, which is much cleaner IMO. The third commit replaces an unboxed_closures feature gate with min_specialization. For some reason the unboxed_closures feature gate suppresses the min_specialization feature gate from triggering on an `TrustedStep` impl. The last comment just turns a regular comment into a doc comment as drive by cleanup. I can move it to a separate PR if preferred.
The previous macro_rules! parsers failed when an additional modifier was added
with ambiguity errors. The error is pretty unclear as to what exactly the cause
here is, but this change simplifies the argument parsing code such that the
error is avoided.
Avoid nondeterminism in trimmed_def_paths
Previously this query depended on the global interning order of Symbols, which
meant that irrelevant changes could influence the query and cause
recompilations. This commit ensures that the return set is stable and will not
be affected by the global order by deterministically (in lexicographic order)
choosing a name to use if there are multiple names for a single DefId.
This should fix the cause of the [regressions] in #83343.
[regressions]: https://perf.rust-lang.org/compare.html?start=9620f3a84b079decfdc2e557be007580b097fe43&end=addb4da686a97da46159f0123cb6cdc2ce3d7fdb
A subset of places referred to 'super-trait', so this changes them
to all use 'supertrait'. This matches 'supertype' and some other
usages. An exception is 'auto-trait' which is consistently used
in that manner.
Rollup of 7 pull requests
Successful merges:
- #85223 (rustdoc: Clarified the attribute which prompts the warning)
- #88847 (platform-support.md: correct ARMv7+MUSL platform triple notes)
- #88963 (Coerce const FnDefs to implement const Fn traits )
- #89376 (Fix use after drop in self-profile with llvm events)
- #89422 (Replace whitespaces in doctests' name with dashes)
- #89440 (Clarify a sentence in the documentation of Vec (#84488))
- #89441 (Normalize after substituting via `field.ty()`)
Failed merges:
r? `@ghost`
`@rustbot` modify labels: rollup
Normalize after substituting via `field.ty()`
Back in https://github.com/rust-lang/rust/issues/72476 I hadn't understood where the problem was coming from, and only worked around the issue. What happens is that calling `field.ty()` on a field of a generic struct substitutes the appropriate generics but doesn't normalize the resulting type.
As a consumer of types I'm surprised that one would substitute without normalizing, feels like a footgun, so I added a comment.
Fixes https://github.com/rust-lang/rust/issues/89393.
Coerce const FnDefs to implement const Fn traits
You can now pass a FnDef to a function expecting `F` where `F: ~const FnTrait`.
r? ``@oli-obk``
``@rustbot`` label T-compiler F-const_trait_impl
Rework HIR API to make invocations of the hir_crate query harder.
`hir_crate` forces the recomputation of queries that depend on it.
This PR aims at avoiding useless invocations of `hir_crate` by making dependent code go through `tcx.hir()`.
This commit removes the restriction of `InstanceDef::Item` on
polymorphization, so that shims can now be polymorphized.
Signed-off-by: David Wood <david.wood@huawei.com>
rustc adds notes to errors which happen post-monomorphization to
provide the user with helpful context (as these errors may rely on the
specific instantiations). To prevent this note being added where it is
not appropriate, the node is checked to originate outwith the current
crate. However, when polymorphization is enabled, this can result in
some errors (produced by `optimized_mir`) to occur earlier in
compilation than they normally would, during the collection of shims.
Some shims have ids that originate in the standard library, but these
should not receive the PME note, so instances for compiler-generated
functions no longer receive this note.
Signed-off-by: David Wood <david.wood@huawei.com>
Added -Z randomize-layout flag
An implementation of #77316, it currently randomly shuffles the fields of `repr(rust)` types based on their `DefPathHash`
r? ``@eddyb``
Previously this query depended on the global interning order of Symbols, which
meant that irrelevant changes could influence the query and cause
recompilations. This commit ensures that the return set is stable and will not
be affected by the global order by deterministically (in lexicographic order)
choosing a name to use if there are multiple names for a single DefId.
This PR has several interconnected pieces:
1. In some of the NLL region error code, we now pass
around an `ObligationCause`, instead of just a plain `Span`.
This gets forwarded into `fulfill_cx.register_predicate_obligation`
during error reporting.
2. The general InferCtxt error reporting code is extended to
handle `ObligationCauseCode::BindingObligation`
3. A new enum variant `ConstraintCategory::Predicate` is added.
We try to avoid using this as the 'best blame constraint' - instead,
we use it to enhance the `ObligationCause` of the `BlameConstraint`
that we do end up choosing.
As a result, several NLL error messages now contain the same
"the lifetime requirement is introduced here" message as non-NLL
errors.
Having an `ObligationCause` available will likely prove useful
for future improvements to NLL error messages.
Introduce `Rvalue::ShallowInitBox`
Polished version of #88700.
Implements MCP rust-lang/compiler-team#460, and should allow #43596 to go forward.
In short, creating an empty box is split from a nullary-op `NullOp::Box` into two steps, first a call to `exchange_malloc`, then a `Rvalue::ShallowInitBox` which transmutes `*mut u8` to a shallow-initialized `Box<T>`. This allows the `exchange_malloc` call to unwind. Details can be found in the MCP.
`NullOp::Box` is not yet removed, purely to make reverting easier in case anything goes wrong as the result of this PR. If revert is needed a reversion of "Use Rvalue::ShallowInitBox for box expression" commit followed by a test bless should be sufficient.
Experiments in #88700 showed a very slight compile-time perf regression due to (supposedly) slightly more time spent in LLVM. We could omit unwind edge generation (in non-`oom=panic` case) in box expression MIR construction to restore perf; but I don't think it's necessary since runtime perf isn't affected and perf difference is rather small.
Be explicit about using Binder::dummy
This is somewhat of a late followup to the binder refactor PR. It removes `ToPredicate` and `ToPolyTraitImpls` that hide the use of `Binder::dummy`. While this does make code a bit more verbose, it allows us be more careful about where we create binders.
Another alternative here might be to add a new trait `ToBinder` or something with a `dummy()` fn. Which could still allow grepping but allows doing something like `trait_ref.dummy()` (but I also wonder if longer-term, it would be better to be even more explicit with a `bind_with_vars(ty::List::empty())` *but* that's not clear yet.
r? ``@nikomatsakis``
Revise never type fallback algorithm
This is a rebase of https://github.com/rust-lang/rust/pull/84573, but dropping the stabilization of never type (and the accompanying large test diff).
Each commit builds & has tests updated alongside it, and could be reviewed in a more or less standalone fashion. But it may make more sense to review the PR as a whole, I'm not sure. It should be noted that tests being updated isn't really a good indicator of final behavior -- never_type_fallback is not enabled by default in this PR, so we can't really see the full effects of the commits here.
This combines the work by Niko, which is [documented in this gist](https://gist.github.com/nikomatsakis/7a07b265dc12f5c3b3bd0422018fa660), with some additional rules largely derived to target specific known patterns that regress with the algorithm solely derived by Niko. We build these from an intuition that:
* In general, fallback to `()` is *sound* in all cases
* But, in general, we *prefer* fallback to `!` as it accepts more code, particularly that written to intentionally use `!` (e.g., Result's with a Infallible/! variant).
When evaluating Niko's proposed algorithm, we find that there are certain cases where fallback to `!` leads to compilation failures in real-world code, and fallback to `()` fixes those errors. In order to allow for stabilization, we need to fix a good portion of these patterns.
The final rule set this PR proposes is that, by default, we fallback from `?T` to `!`, with the following exceptions:
1. `?T: Foo` and `Bar::Baz = ?T` and `(): Foo`, then fallback to `()`
2. Per [Niko's algorithm](https://gist.github.com/nikomatsakis/7a07b265dc12f5c3b3bd0422018fa660#proposal-fallback-chooses-between--and--based-on-the-coercion-graph), the "live" `?T` also fallback to `()`.
The first rule is necessary to address a fairly common pattern which boils down to something like the snippet below. Without rule 1, we do not see the closure's return type as needing a () fallback, which leads to compilation failure.
```rust
#![feature(never_type_fallback)]
trait Bar { }
impl Bar for () { }
impl Bar for u32 { }
fn foo<R: Bar>(_: impl Fn() -> R) {}
fn main() {
foo(|| panic!());
}
```
r? `@jackh726`
fix non_blanket_impls iteration order
We sometimes iterate over all `non_blanket_impls`, not sure if this is observable outside
of error messages (i.e. as incremental bugs). This should fix the underlying issue of #86986.
second attempt of #88718
r? `@nikomatsakis`
This PR allows applying a `#[track_caller]` attribute to a
closure/generator expression. The attribute as interpreted as applying
to the compiler-generated implementation of the corresponding trait
method (`FnOnce::call_once`, `FnMut::call_mut`, `Fn::call`, or
`Generator::resume`).
This feature does not have its own feature gate - however, it requires
`#![feature(stmt_expr_attributes)]` in order to actually apply
an attribute to a closure or generator.
This is implemented in the same way as for functions - an extra
location argument is appended to the end of the ABI. For closures,
this argument is *not* part of the 'tupled' argument storing the
parameters - the final closure argument for `#[track_caller]` closures
is no longer a tuple.
For direct (monomorphized) calls, the necessary support was already
implemented - we just needeed to adjust some assertions around checking
the ABI and argument count to take closures into account.
For calls through a trait object, more work was needed.
When creating a `ReifyShim`, we need to create a shim
for the trait method (e.g. `FnOnce::call_mut`) - unlike normal
functions, closures are never invoked directly, and always go through a
trait method.
Additional handling was needed for `InstanceDef::ClosureOnceShim`. In
order to pass location information throgh a direct (monomorphized) call
to `FnOnce::call_once` on an `FnMut` closure, we need to make
`ClosureOnceShim` aware of `#[tracked_caller]`. A new field
`track_caller` is added to `ClosureOnceShim` - this is used by
`InstanceDef::requires_caller` location, allowing codegen to
pass through the extra location argument.
Since `ClosureOnceShim.track_caller` is only used by codegen,
we end up generating two identical MIR shims - one for
`track_caller == true`, and one for `track_caller == false`. However,
these two shims are used by the entire crate (i.e. it's two shims total,
not two shims per unique closure), so this shouldn't a big deal.
Rollup of 12 pull requests
Successful merges:
- #88795 (Print a note if a character literal contains a variation selector)
- #89015 (core::ascii::escape_default: reduce struct size)
- #89078 (Cleanup: Remove needless reference in ParentHirIterator)
- #89086 (Stabilize `Iterator::map_while`)
- #89096 ([bootstrap] Improve the error message when `ninja` is not found to link to installation instructions)
- #89113 (dont `.ensure()` the `thir_abstract_const` query call in `mir_build`)
- #89114 (Fixes a technicality regarding the size of C's `char` type)
- #89115 (⬆️ rust-analyzer)
- #89126 (Fix ICE when `indirect_structural_match` is allowed)
- #89141 (Impl `Error` for `FromSecsError` without foreign type)
- #89142 (Fix match for placeholder region)
- #89147 (add case for checking const refs in check_const_value_eq)
Failed merges:
r? `@ghost`
`@rustbot` modify labels: rollup
Migrate in-tree crates to 2021
This replaces #89075 (cherry picking some of the commits from there), and closes#88637 and fixes#89074.
It excludes a migration of the library crates for now (see tidy diff) because we have some pending bugs around macro spans to fix there.
I instrumented bootstrap during the migration to make sure all crates moved from 2018 to 2021 had the compatibility warnings applied first.
Originally, the intent was to support cargo fix --edition within bootstrap, but this proved fairly difficult to pull off. We'd need to architect the check functionality to support running cargo check and cargo fix within the same x.py invocation, and only resetting sysroots on check. Further, it was found that cargo fix doesn't behave too well with "not quite workspaces", such as Clippy which has several crates. Bootstrap runs with --manifest-path ... for all the tools, and this makes cargo fix only attempt migration for that crate. We can't use e.g. --workspace due to needing to maintain sysroots for different phases of compilation appropriately.
It is recommended to skip the mass migration of Cargo.toml's to 2021 for review purposes; you can also use `git diff d6cd2c6c87 -I'^edition = .20...$'` to ignore the edition = 2018/21 lines in the diff.
Lower only one HIR owner at a time
Based on https://github.com/rust-lang/rust/pull/83723
Additional diff is here: https://github.com/cjgillot/rust/compare/ownernode...lower-mono
Lowering is very tangled and has a tendency to intertwine the transformation of different items. This PR aims at simplifying the logic by:
- moving global analyses to the resolver (item_generics_num_lifetimes, proc_macros, trait_impls);
- removing a few special cases (non-exported macros and use statements);
- restricting the amount of available information at any one time;
- avoiding back-and-forth between different owners: an item must now be lowered all at once, and its parent cannot refer to its nodes.
I also removed the sorting of bodies by span. The diagnostic ordering changes marginally, since definitions are pretty much sorted already according to the AST. This uncovered a subtlety in thir-unsafeck.
(While these items could logically be in different PRs, the dependency between commits and the amount of conflicts force a monolithic PR.)
This also adjusts the lint docs generation to accept (and ignore) an allow
attribute, rather than expecting the documentation to be immediately followed by
the lint name.
Add `ConstraintCategory::Usage` for handling aggregate construction
In some cases, we emit borrowcheck diagnostics pointing
at a particular field expression in a struct expression
(e.g. `MyStruct { field: my_expr }`). However, this
behavior currently relies on us choosing the
`ConstraintCategory::Boring` with the 'correct' span.
When adding additional variants to `ConstraintCategory`,
(or changing existing usages away from `ConstraintCategory::Boring`),
the current behavior can easily get broken, since a non-boring
constraint will get chosen over a boring one.
To make the diagnostic output less fragile, this commit
adds a `ConstraintCategory::Usage` variant. We use this variant
for the temporary assignments created for each field of
an aggregate we are constructing.
Using this new variant, we can emit a message mentioning
"this usage", emphasizing the fact that the error message
is related to the specific use site (in the struct expression).
This is preparation for additional work on improving NLL error messages
(see #57374)
Querify `FnAbi::of_{fn_ptr,instance}` as `fn_abi_of_{fn_ptr,instance}`.
*Note: opening this PR as draft because it's based on #88499*
This more or less replicates the `LayoutOf::layout_of` setup from #88499, to replace `FnAbi::of_{fn_ptr,instance}` with `FnAbiOf::fn_abi_of_{fn_ptr,instance}`, and also route them through queries (which `layout_of` has used for a while).
The two changes at the use sites (other than the names) are:
* return type is now wrapped in `&'tcx`
* the value *is* interned, which may affect performance
* the `extra_args` list is now an interned `&'tcx ty::List<Ty<'tcx>>`
* should be cheap (it's empty for anything other than C variadics)
Theoretically, a `FnAbiOfHelpers` implementer could choose to keep the `Result<...>` instead of eagerly erroring, but the only existing users of these APIs are codegen backends, so they don't (want to) take advantage of this.
At least miri could make use of this, since it prefers propagating errors (it "just" doesn't use `FnAbi` yet - cc `@RalfJung).`
The way this is done is probably less efficient than what is possible, because the queries handle the correctness-oriented API (i.e. the split into `fn` pointers vs instances), whereas a lower-level query could end up with more reuse between different instances with identical signatures.
r? `@nagisa` cc `@oli-obk` `@bjorn3`
Gather module items after lowering.
This avoids having a non-local analysis inside lowering.
By implementing `hir_module_items` using a visitor, we make sure that iterations and visitors are consistent.
Simplify lazy DefPathHash decoding by using an on-disk hash table.
This PR simplifies the logic around mapping `DefPathHash` values encountered during incremental compilation to valid `DefId`s in the current session. It is able to do so by using an on-disk hash table encoding that allows for looking up values directly, i.e. without deserializing the entire table.
The main simplification comes from not having to keep track of `DefPathHashes` being used during the compilation session.
We now fallback type variables using the following rules:
* Construct a coercion graph `A -> B` where `A` and `B` are unresolved
type variables or the `!` type.
* Let D be those variables that are reachable from `!`.
* Let N be those variables that are reachable from a variable not in
D.
* All variables in (D \ N) fallback to `!`.
* All variables in (D & N) fallback to `()`.
Point at argument instead of call for their obligations
When an obligation is introduced by a specific `fn` argument, point at
the argument instead of the `fn` call if the obligation fails to be
fulfilled.
Move the information about pointing at the call argument expression in
an unmet obligation span from the `FulfillmentError` to a new
`ObligationCauseCode`.
When giving an error about an obligation introduced by a function call
that an argument doesn't fulfill, and that argument is a block, add a
span_label pointing at the innermost tail expression.
Current output:
```
error[E0425]: cannot find value `x` in this scope
--> f10.rs:4:14
|
4 | Some(x * 2)
| ^ not found in this scope
error[E0277]: expected a `FnOnce<({integer},)>` closure, found `Option<_>`
--> f10.rs:2:31
|
2 | let p = Some(45).and_then({
| ______________________--------_^
| | |
| | required by a bound introduced by this call
3 | | |x| println!("doubling {}", x);
4 | | Some(x * 2)
| | -----------
5 | | });
| |_____^ expected an `FnOnce<({integer},)>` closure, found `Option<_>`
|
= help: the trait `FnOnce<({integer},)>` is not implemented for `Option<_>`
```
Previous output:
```
error[E0425]: cannot find value `x` in this scope
--> f10.rs:4:14
|
4 | Some(x * 2)
| ^ not found in this scope
error[E0277]: expected a `FnOnce<({integer},)>` closure, found `Option<_>`
--> f10.rs:2:22
|
2 | let p = Some(45).and_then({
| ^^^^^^^^ expected an `FnOnce<({integer},)>` closure, found `Option<_>`
|
= help: the trait `FnOnce<({integer},)>` is not implemented for `Option<_>`
```
Partially address #27300. Will require rebasing on top of #88546.
In some cases, we emit borrowcheck diagnostics pointing
at a particular field expression in a struct expression
(e.g. `MyStruct { field: my_expr }`). However, this
behavior currently relies on us choosing the
`ConstraintCategory::Boring` with the 'correct' span.
When adding additional variants to `ConstraintCategory`,
(or changing existing usages away from `ConstraintCategory::Boring`),
the current behavior can easily get broken, since a non-boring
constraint will get chosen over a boring one.
To make the diagnostic output less fragile, this commit
adds a `ConstraintCategory::Usage` variant. We use this variant
for the temporary assignments created for each field of
an aggregate we are constructing.
Using this new variant, we can emit a message mentioning
"this usage", emphasizing the fact that the error message
is related to the specific use site (in the struct expression).
This is preparation for additional work on improving NLL error messages
(see #57374)
Move the information about pointing at the call argument expression in
an unmet obligation span from the `FulfillmentError` to a new
`ObligationCauseCode`.
Const drop
The changes are pretty primitive at this point. But at least it works. ^-^
Problems with the current change that I can think of now:
- [x] `~const Drop` shouldn't change anything in the non-const world.
- [x] types that do not have drop glues shouldn't fail to satisfy `~const Drop` in const contexts. `struct S { a: u8, b: u16 }` This might not fail for `needs_non_const_drop`, but it will fail in `rustc_trait_selection`.
- [x] The current change accepts types that have `const Drop` impls but have non-const `Drop` glue.
Fixes#88424.
Significant Changes:
- `~const Drop` is no longer treated as a normal trait bound. In non-const contexts, this bound has no effect, but in const contexts, this restricts the input type and all of its transitive fields to either a) have a `const Drop` impl or b) can be trivially dropped (i.e. no drop glue)
- `T: ~const Drop` will not be linted like `T: Drop`.
- Instead of recursing and iterating through the type in `rustc_mir::transform::check_consts`, we use the trait system to special case `~const Drop`. See [`rustc_trait_selection::...::candidate_assembly#assemble_const_drop_candidates`](https://github.com/fee1-dead/rust/blob/const-drop/compiler/rustc_trait_selection/src/traits/select/candidate_assembly.rs#L817) and others.
Changes not related to `const Drop`ping and/or changes that are insignificant:
- `Node.constness_for_typeck` no longer returns `hir::Constness::Const` for type aliases in traits. This was previously used to hack how we determine default bound constness for items. But because we now use an explicit opt-in, it is no longer needed.
- Removed `is_const_impl_raw` query. We have `impl_constness`, and the only existing use of that query uses `HirId`, which means we can just operate it with hir.
- `ty::Destructor` now has a field `constness`, which represents the constness of the destructor.
r? `@oli-obk`
This encoding allows for random access without an expensive upfront decoding
state which in turn allows simplifying the DefPathIndex lookup logic without
regressing performance.
Introduce NullOp::AlignOf
This PR introduces `Rvalue::NullaryOp(NullOp::AlignOf, ty)`, which will be lowered from `align_of`, similar to `size_of` lowering to `Rvalue::NullaryOp(NullOp::SizeOf, ty)`.
The changes are originally part of #88700 but since it's not dependent on other changes and could have performance impact on its own, it's separated into its own PR.
Add -Z panic-in-drop={unwind,abort} command-line option
This PR changes `Drop` to abort if an unwinding panic attempts to escape it, making the process abort instead. This has several benefits:
- The current behavior when unwinding out of `Drop` is very unintuitive and easy to miss: unwinding continues, but the remaining drops in scope are simply leaked.
- A lot of unsafe code doesn't expect drops to unwind, which can lead to unsoundness:
- https://github.com/servo/rust-smallvec/issues/14
- https://github.com/bluss/arrayvec/issues/3
- There is a code size and compilation time cost to this: LLVM needs to generate extra landing pads out of all calls in a drop implementation. This can compound when functions are inlined since unwinding will then continue on to process drops in the callee, which can itself unwind, etc.
- Initial measurements show a 3% size reduction and up to 10% compilation time reduction on some crates (`syn`).
One thing to note about `-Z panic-in-drop=abort` is that *all* crates must be built with this option for it to be sound since it makes the compiler assume that dropping `Box<dyn Any>` will never unwind.
cc https://github.com/rust-lang/lang-team/issues/97
generic_const_exprs: use thir for abstract consts instead of mir
Changes `AbstractConst` building to use `thir` instead of `mir` so that there's less chance of consts unifying when they shouldn't because lowering to mir dropped information (see `abstract-consts-as-cast-5.rs` test)
r? `@lcnr`
Encode spans relative to the enclosing item
The aim of this PR is to avoid recomputing queries when code is moved without modification.
MCP at https://github.com/rust-lang/compiler-team/issues/443
This is achieved by :
1. storing the HIR owner LocalDefId information inside the span;
2. encoding and decoding spans relative to the enclosing item in the incremental on-disk cache;
3. marking a dependency to the `source_span(LocalDefId)` query when we translate a span from the short (`Span`) representation to its explicit (`SpanData`) representation.
Since all client code uses `Span`, step 3 ensures that all manipulations
of span byte positions actually create the dependency edge between
the caller and the `source_span(LocalDefId)`.
This query return the actual absolute span of the parent item.
As a consequence, any source code motion that changes the absolute byte position of a node will either:
- modify the distance to the parent's beginning, so change the relative span's hash;
- dirty `source_span`, and trigger the incremental recomputation of all code that
depends on the span's absolute byte position.
With this scheme, I believe the dependency tracking to be accurate.
For the moment, the spans are marked during lowering.
I'd rather do this during def-collection,
but the AST MutVisitor is not practical enough just yet.
The only difference is that we attach macro-expanded spans
to their expansion point instead of the macro itself.
Change more x64 size checks to not apply to x32.
Commit 95e096d6 changed a bunch of size checks already, but more have
been added, so this fixes the new ones the same way: the various size
checks that are conditional on target_arch = "x86_64" were not intended
to apply to x86_64-unknown-linux-gnux32, so add
target_pointer_width = "64" to the conditions.
Now that we encode spans relative to the items, the item's own span is
never actually hashed as part of the HIR.
In consequence, we explicitly include it in the crate hash to avoid
missing cross-crate invalidations.
Split rustc_mir
The `rustc_mir` crate is the second largest in the compiler.
This PR splits it up into 5 crates:
- rustc_borrowck;
- rustc_const_eval;
- rustc_mir_dataflow;
- rustc_mir_transform;
- rustc_monomorphize.
Mmap the incremental data instead of reading it.
Instead of reading the full incremental state using `fs::read_file`, we memmap it using a private read-only file-backed map.
This allows the system to reclaim any memory we are not using, while ensuring we are not polluted by
outside modifications to the file.
Suggested in https://github.com/rust-lang/rust/pull/83036#issuecomment-800458082 by `@bjorn3`
Avoid invoking the hir_crate query to traverse the HIR
Walking the HIR tree is done using the `hir_crate` query. However, this is unnecessary, since `hir_owner(CRATE_DEF_ID)` provides the same information. Since depending on `hir_crate` forces dependents to always be executed, this leads to unnecessary work.
By splitting HIR and attributes visits, we can avoid an edge to `hir_crate` when trying to visit the HIR tree.
Stop allocating vtable entries for non-object-safe methods
Current a vtable entry is allocated for all associated fns, even if the method is not object-safe: https://godbolt.org/z/h7vx6f35T
As a result, each vtable for `Iterator`' currently consumes 74 `usize`s. This PR stops allocating vtable entries for those methods, reducing vtable size of each `Iterator` vtable to 7 `usize`s.
Note that this PR introduces will cause more invocations of `is_vtable_safe_method`. So a perf run might be needed. If result isn't favorable then we might need to query-ify `is_vtable_safe_method`.
Provide `layout_of` automatically (given tcx + param_env + error handling).
After #88337, there's no longer any uses of `LayoutOf` within `rustc_target` itself, so I realized I could move the trait to `rustc_middle::ty::layout` and redesign it a bit.
This is similar to #88338 (and supersedes it), but at no ergonomic loss, since there's no funky `C: LayoutOf<Ty = Ty>` -> `Ty: TyAbiInterface<C>` generic `impl` chain, and each `LayoutOf` still corresponds to one `impl` (of `LayoutOfHelpers`) for the specific context.
After this PR, this is what's needed to get `trait LayoutOf` (with the `layout_of` method) implemented on some context type:
* `TyCtxt`, via `HasTyCtxt`
* `ParamEnv`, via `HasParamEnv`
* a way to transform `LayoutError`s into the desired error type
* an error type of `!` can be paired with having `cx.layout_of(...)` return `TyAndLayout` *without* `Result<...>` around it, such as used by codegen
* this is done through a new `LayoutOfHelpers` trait (and so is specifying the type of `cx.layout_of(...)`)
When going through this path (and not bypassing it with a manual `impl` of `LayoutOf`), the end result is that only the error case can be customized, the query itself and the success paths are guaranteed to be uniform.
(**EDIT**: just noticed that because of the supertrait relationship, you cannot actually implement `LayoutOf` yourself, the blanket `impl` fully covers all possible context types that could ever implement it)
Part of the motivation for this shape of API is that I've been working on querifying `FnAbi::of_*`, and what I want/need to introduce for that looks a lot like the setup in this PR - in particular, it's harder to express the `FnAbi` methods in `rustc_target`, since they're much more tied to `rustc` concepts.
r? `@nagisa` cc `@oli-obk` `@bjorn3`
Commit 95e096d6 changed a bunch of size checks already, but more have
been added, so this fixes the new ones the same way: the various size
checks that are conditional on target_arch = "x86_64" were not intended
to apply to x86_64-unknown-linux-gnux32, so add
target_pointer_width = "64" to the conditions.
Fix drop handling for `if let` expressions
MIR lowering for `if let` expressions is now more complicated now that
`if let` exists in HIR. This PR adds a scope for the variables bound in
an `if let` expression and then uses an approach similar to how we
handle loops to ensure that we reliably drop the correct variables.
Closes#88307
cc `@flip1995` `@richkadel` `@c410-f3r`
MIR lowering for `if let` expressions is now more complicated now that
`if let` exists in HIR. This PR adds a scope for the variables bound in
an `if let` expression and then uses an approach similar to how we
handle loops to ensure that we reliably drop the correct variables.
Introduce `let...else`
Tracking issue: #87335
The trickiest part for me was enforcing the diverging else block with clear diagnostics. Perhaps the obvious solution is to expand to `let _: ! = ..`, but I decided against this because, when a "mismatched type" error is found in typeck, there is no way to trace where in the HIR the expected type originated, AFAICT. In order to pass down this information, I believe we should introduce `Expectation::LetElseNever(HirId)` or maybe add `HirId` to `Expectation::HasType`, but I left that as a future enhancement. For now, I simply assert that the block is `!` with a custom `ObligationCauseCode`, and I think this is clear enough, at least to start. The downside here is that the error points at the entire block rather than the specific expression with the wrong type. I left a todo to this effect.
Overall, I believe this PR is feature-complete with regard to the RFC.
rustc_target: `TyAndLayout::field` should never error.
This refactor (making `TyAndLayout::field` return `TyAndLayout` without any `Result` around it) is based on a simple observation, regarding `TyAndLayout::field`:
If `cx.layout_of(ty)` succeeds (for some `cx` and `ty`), then `.field(cx, i)` on the resulting `TyAndLayout` should *always* succeed in computing `cx.layout_of(field_ty)` (where `field_ty` is the type of the `i`th field of `ty`).
The reason for this is that no matter which field is chosen, `cx.layout_of(field_ty)` *will have already been computed*, as part of computing `cx.layout_of(ty)`, as we cannot determine the layout of *any* type without considering the layouts of *all* of its fields.
And so it should be fine to turn any errors into ICEs, since they likely indicate a `cx` mismatch, or some other edge case that is due to a compiler bug (as opposed to ever being an user-facing error).
<hr/>
Each commit should probably be reviewed separately, though note that there's some `where` clauses (in `rustc_target::abi::call::*`) that change in most commits.
cc `@nagisa` `@oli-obk`
Introduce `~const`
- [x] Removed `?const` and change uses of `?const`
- [x] Added `~const` to the AST. It is gated behind const_trait_impl.
- [x] Validate `~const` in ast_validation.
- [x] Update UI Tests
- [x] Add enum `BoundConstness` (With variants `NotConst` and
`ConstIfConst` allowing future extensions)
- [x] Adjust trait selection and pre-existing code to use `BoundConstness`.
- [ ] Optional steps for this PR
- [x] Fix#88155
- [x] ~~Do something with constness bounds in chalk~~ Must be done to rust-lang/chalk (just tried to refactor, there are a lot of errors to resolve :( )
- [ ] Adjust Error messages for `~const` bounds that can't be satisfied.
r? `@oli-obk`
`#[inline]` non-generic `pub fn`s in `rustc_target::abi` and `ty::layout`.
Mostly doing this as a perf curiosity, having spotted that `#[inline]` usage is a bit spotty.
- [x] Removed `?const` and change uses of `?const`
- [x] Added `~const` to the AST. It is gated behind const_trait_impl.
- [x] Validate `~const` in ast_validation.
- [ ] Add enum `BoundConstness` to the HIR. (With variants `NotConst` and
`ConstIfConst` allowing future extensions)
- [ ] Adjust trait selection and pre-existing code to use `BoundConstness`.
- [ ] Optional steps (*for this PR, obviously*)
- [ ] Fix#88155
- [ ] Do something with constness bounds in chalk
lazily "compute" anon const default substs
Continuing the work of #83086, this implements the discussed solution for the [unused substs problem](https://github.com/rust-lang/project-const-generics/blob/master/design-docs/anon-const-substs.md#unused-substs). As of now, anonymous constants inherit all of their parents generics, even if they do not use them, e.g. in `fn foo<T, const N: usize>() -> [T; N + 1]`, the array length has `T` as a generic parameter even though it doesn't use it. These *unused substs* cause some backwards incompatible, and imo incorrect behavior, e.g. #78369.
---
We do not actually filter any generic parameters here and the `default_anon_const_substs` query still a dummy which only checks that
- we now prevent the previously existing query cycles and are able to call `predicates_of(parent)` when computing the substs of anonymous constants
- the default anon consts substs only include the typeflags we assume it does.
Implementing that filtering will be left as future work.
---
The idea of this PR is to delay the creation of the anon const substs until after we've computed `predicates_of` for the parent of the anon const. As the predicates of the parent can however contain the anon const we still have to create a `ty::Const` for it.
We do this by changing the substs field of `ty::Unevaluated` to an option and modifying accesses to instead call the method `unevaluated.substs(tcx)` which returns the substs as before. If the substs - now `substs_` - of `ty::Unevaluated` are `None`, it means that the anon const currently has its default substs, i.e. the substs it has when first constructed, which are the generic parameters it has available. To be able to call `unevaluated.substs(tcx)` in a `TypeVisitor`, we add the non-defaulted method `fn tcx_for_anon_const_substs(&self) -> Option<TyCtxt<'tcx>>`. In case `tcx_for_anon_const_substs` returns `None`, unknown anon const default substs are skipped entirely.
Even when `substs_` is `None` we still have to treat the constant as if it has its default substs. To do this, `TypeFlags` are modified so that it is clear whether they can still change when *exposing* any anon const default substs. A new flag, `HAS_UNKNOWN_DEFAULT_CONST_SUBSTS`, is added in case some default flags are missing.
The rest of this PR are some smaller changes to either not cause cycles by trying to access the default anon const substs too early or to be able to access the `tcx` in previously unused locations.
cc `@rust-lang/project-const-generics`
r? `@nikomatsakis`
Morph `layout_raw` query into `layout_of`.
Before this PR, `LayoutCx::layout_of` wrapped the `layout_raw` query, to:
* normalize the type, before attempting to compute the layout
* pass the layout to `record_layout_for_printing`, for `-Zprint-type-sizes`
Moving those two responsibilities into the query may reduce overhead (due to cached calls skipping those steps), but I want to do a perf run to know.
One of the changes I had to make was changing the return type of the query, to be able to both get out the type produced by normalizing inside the query *and* to match the signature of the old `TyCtxt::layout_of`. This change may be worse, perf-wise, so that's another reason I want to check.
r? `@nagisa` cc `@oli-obk`
Use undef for uninitialized bytes in constants
Fixes#83657
This generates good code when the const is fully uninit, e.g.
```rust
#[no_mangle]
pub const fn fully_uninit() -> MaybeUninit<[u8; 10]> {
const M: MaybeUninit<[u8; 10]> = MaybeUninit::uninit();
M
}
```
generates
```asm
fully_uninit:
ret
```
as you would expect.
There is no improvement, however, when it's partially uninit, e.g.
```rust
pub struct PartiallyUninit {
x: u64,
y: MaybeUninit<[u8; 10]>
}
#[no_mangle]
pub const fn partially_uninit() -> PartiallyUninit {
const X: PartiallyUninit = PartiallyUninit { x: 0xdeadbeefcafe, y: MaybeUninit::uninit() };
X
}
```
generates
```asm
partially_uninit:
mov rax, rdi
mov rcx, qword ptr [rip + .L__unnamed_1+16]
mov qword ptr [rdi + 16], rcx
movups xmm0, xmmword ptr [rip + .L__unnamed_1]
movups xmmword ptr [rdi], xmm0
ret
.L__unnamed_1:
.asciz "\376\312\357\276\255\336\000"
.zero 16
.size .L__unnamed_1, 24
```
which copies a bunch of zeros in place of the undef bytes, the same as before this change.
Edit: generating partially-undef constants isn't viable at the moment anyways due to #84565, so it's disabled
Use if-let guards in the codebase and various other pattern cleanups
Dogfooding if-let guards as experimentation for the feature.
Tracking issue #51114. Conflicts with #87937.
Normalize projections under binders
Fixes#70243Fixes#70120Fixes#62529Fixes#87219
Issues to followup on after (probably fixed, but no test added here):
#76956#56556#79207#85636
r? `@nikomatsakis`
Use custom wrap-around type instead of RangeInclusive
Two reasons:
1. More memory is allocated than necessary for `valid_range` in `Scalar`. The range is not used as an iterator and `exhausted` is never used.
2. `contains`, `count` etc. methods in `RangeInclusive` are doing very unhelpful(and dangerous!) things when used as a wrap-around range. - In general this PR wants to limit potentially confusing methods, that have a low probability of working.
Doing a local perf run, every metric shows improvement except for instructions.
Max-rss seem to have a very consistent improvement.
Sorry - newbie here, probably doing something wrong.
Remove `Session.used_attrs` and move logic to `CheckAttrVisitor`
Instead of updating global state to mark attributes as used,
we now explicitly emit a warning when an attribute is used in
an unsupported position. As a side effect, we are to emit more
detailed warning messages (instead of just a generic "unused" message).
`Session.check_name` is removed, since its only purpose was to mark
the attribute as used. All of the callers are modified to use
`Attribute.has_name`
Additionally, `AttributeType::AssumedUsed` is removed - an 'assumed
used' attribute is implemented by simply not performing any checks
in `CheckAttrVisitor` for a particular attribute.
We no longer emit unused attribute warnings for the `#[rustc_dummy]`
attribute - it's an internal attribute used for tests, so it doesn't
mark sense to treat it as 'unused'.
With this commit, a large source of global untracked state is removed.
Trait upcasting coercion (part 3)
By using separate candidates for each possible choice, this fixes type-checking issues in previous commits.
r? `@nikomatsakis`
Instead of updating global state to mark attributes as used,
we now explicitly emit a warning when an attribute is used in
an unsupported position. As a side effect, we are to emit more
detailed warning messages (instead of just a generic "unused" message).
`Session.check_name` is removed, since its only purpose was to mark
the attribute as used. All of the callers are modified to use
`Attribute.has_name`
Additionally, `AttributeType::AssumedUsed` is removed - an 'assumed
used' attribute is implemented by simply not performing any checks
in `CheckAttrVisitor` for a particular attribute.
We no longer emit unused attribute warnings for the `#[rustc_dummy]`
attribute - it's an internal attribute used for tests, so it doesn't
mark sense to treat it as 'unused'.
With this commit, a large source of global untracked state is removed.
Refactor fallback code to prepare for never type
This PR contains cherry-picks of some of `@nikomatsakis's` work from #79366, and shouldn't (AFAICT) represent any change in behavior. However, the refactoring is good regardless of the never type work being landed, and will reduce the size of those eventual PR(s) (and rebase pain).
I am not personally an expert on this code, and the commits are essentially 100% `@nikomatsakis's,` but they do seem reasonable to me by my understanding. Happy to edit with review, of course. Commits are best reviewed in sequence rather than all together.
r? `@jackh726` perhaps?
Try filtering out non-const impls when we expect const impls
**TL;DR**: Associated types on const impls are now bounded; we now disallow calling a const function with bounds when the specified type param only has a non-const impl.
r? `@oli-obk`
Name the captured upvars for closures/generators in debuginfo
Previously, debuggers print closures as something like
```
y::main::closure-0 (0x7fffffffdd34)
```
The pointer actually references to an upvar. It is not very obvious, especially for beginners.
It's because upvars don't have names before, as they are packed into a tuple. This PR names the upvars, so we can expect to see something like
```
y::main::closure-0 {_captured_ref__b: 0x[...]}
```
r? `@tmandry`
Discussed at https://github.com/rust-lang/rust/pull/84752#issuecomment-831639489 .
Add c_enum_min_bits target spec field, use for arm-none and thumb-none targets
Fixes https://github.com/rust-lang/rust/issues/87917
<s>Haven't tested this yet, still playing around.</s>
This seems to fix the issue.
Hide allocator details from TryReserveError
I think there's [no need for TryReserveError to carry detailed information](https://github.com/rust-lang/rust/issues/48043#issuecomment-825139280), but I wouldn't want that issue to delay stabilization of the `try_reserve` feature.
So I'm proposing to stabilize `try_reserve` with a `TryReserveError` as an opaque structure, and if needed, expose error details later.
This PR moves the `enum` to an unstable inner `TryReserveErrorKind` that lives under a separate feature flag. `TryReserveErrorKind` could possibly be left as an implementation detail forever, and the `TryReserveError` get methods such as `allocation_size() -> Option<usize>` or `layout() -> Option<Layout>` instead, or the details could be dropped completely to make try-reserve errors just a unit struct, and thus smaller and cheaper.
rustc: Fill out remaining parts of C-unwind ABI
This commit intends to fill out some of the remaining pieces of the
C-unwind ABI. This has a number of other changes with it though to move
this design space forward a bit. Notably contained within here is:
* On `panic=unwind`, the `extern "C"` ABI is now considered as "may
unwind". This fixes a longstanding soundness issue where if you
`panic!()` in an `extern "C"` function defined in Rust that's actually
UB because the LLVM representation for the function has the `nounwind`
attribute, but then you unwind.
* Whether or not a function unwinds now mainly considers the ABI of the
function instead of first checking the panic strategy. This fixes a
miscompile of `extern "C-unwind"` with `panic=abort` because that ABI
can still unwind.
* The aborting stub for non-unwinding ABIs with `panic=unwind` has been
reimplemented. Previously this was done as a small tweak during MIR
generation, but this has been moved to a separate and dedicated MIR
pass. This new pass will, for appropriate functions and function
calls, insert a `cleanup` landing pad for any function call that may
unwind within a function that is itself not allowed to unwind. Note
that this subtly changes some behavior from before where previously on
an unwind which was caught-to-abort it would run active destructors in
the function, and now it simply immediately aborts the process.
* The `#[unwind]` attribute has been removed and all users in tests and
such are now using `C-unwind` and `#![feature(c_unwind)]`.
I think this is largely the last piece of the RFC to implement.
Unfortunately I believe this is still not stabilizable as-is because
activating the feature gate changes the behavior of the existing `extern
"C"` ABI in a way that has no replacement. My thinking for how to enable
this is that we add support for the `C-unwind` ABI on stable Rust first,
and then after it hits stable we change the behavior of the `C` ABI.
That way anyone straddling stable/beta/nightly can switch to `C-unwind`
safely.
rustc: Replace `HirId`s with `LocalDefId`s in `AccessLevels` tables
and passes using those tables - primarily privacy checking, stability checking and dead code checking.
All these passes work with definitions rather than with arbitrary HIR nodes.
r? `@cjgillot`
cc `@lambinoo` (#87487)
Trait upcasting coercion (part2)
This is the second part of trait upcasting coercion implementation.
Currently this is blocked on #86264 .
The third part might be implemented using unsafety checking
r? `@bjorn3`
This commit intends to fill out some of the remaining pieces of the
C-unwind ABI. This has a number of other changes with it though to move
this design space forward a bit. Notably contained within here is:
* On `panic=unwind`, the `extern "C"` ABI is now considered as "may
unwind". This fixes a longstanding soundness issue where if you
`panic!()` in an `extern "C"` function defined in Rust that's actually
UB because the LLVM representation for the function has the `nounwind`
attribute, but then you unwind.
* Whether or not a function unwinds now mainly considers the ABI of the
function instead of first checking the panic strategy. This fixes a
miscompile of `extern "C-unwind"` with `panic=abort` because that ABI
can still unwind.
* The aborting stub for non-unwinding ABIs with `panic=unwind` has been
reimplemented. Previously this was done as a small tweak during MIR
generation, but this has been moved to a separate and dedicated MIR
pass. This new pass will, for appropriate functions and function
calls, insert a `cleanup` landing pad for any function call that may
unwind within a function that is itself not allowed to unwind. Note
that this subtly changes some behavior from before where previously on
an unwind which was caught-to-abort it would run active destructors in
the function, and now it simply immediately aborts the process.
* The `#[unwind]` attribute has been removed and all users in tests and
such are now using `C-unwind` and `#![feature(c_unwind)]`.
I think this is largely the last piece of the RFC to implement.
Unfortunately I believe this is still not stabilizable as-is because
activating the feature gate changes the behavior of the existing `extern
"C"` ABI in a way that has no replacement. My thinking for how to enable
this is that we add support for the `C-unwind` ABI on stable Rust first,
and then after it hits stable we change the behavior of the `C` ABI.
That way anyone straddling stable/beta/nightly can switch to `C-unwind`
safely.
CTFE: throw unsupported error when partially overwriting a pointer
Currently, during CTFE, when a write to memory would overwrite parts of a pointer, we make the remaining parts of that pointer "uninitialized". This is probably not what users expect, so if this ever happens they will be quite confused about why some of the data just vanishes for seemingly no good reason.
So I propose we change this to abort CTFE when that happens, to at last avoid silently doing the wrong thing.
Cc https://github.com/rust-lang/rust/issues/87184
Our CTFE test suite still seems to pass. However, we should probably crater this, and I want to do some tests with Miri as well.
Bail on any found recursion when expanding opaque types
Fixes#87450. More of a bandaid because it does not fix the exponential complexity of the type folding used for opaque type expansion.
Support -Z unpretty=thir-tree again
Currently `-Z unpretty=thir-tree` is broken after some THIR refactorings. This re-implements it, making it easier to debug THIR-related issues.
We have to do analyzes before getting the THIR, since trying to create THIR from invalid HIR can ICE. But doing those analyzes requires the THIR to be built and stolen. We work around this by creating a separate query to construct the THIR tree string representation.
Closes https://github.com/rust-lang/project-thir-unsafeck/issues/8, fixes#85552.
get rid of NoMirFor error variant
The only place where we throw that error, it is very quickly caught again and turned into a different error. So raise that other error immediately.
Add flag to configure `large_assignments` lint
The `large_assignments` lints detects moves over specified limit. The
limit is configured through `move_size_limit = "N"` attribute placed at
the root of a crate. When attribute is absent, the lint is disabled.
Make it possible to enable the lint without making any changes to the
source code, through a new flag `-Zmove-size-limit=N`. For example, to
detect moves exceeding 1023 bytes in a cargo crate, including all
dependencies one could use:
```
$ env RUSTFLAGS=-Zmove-size-limit=1024 cargo build -vv
```
Lint tracking issue #83518.
Store all HIR owners in the same container
This replaces the previous storage in a BTreeMap for each of Item/ImplItem/TraitItem/ForeignItem.
This should allow for a more compact storage.
Based on https://github.com/rust-lang/rust/pull/83114
dont provide fwd declared params to cg defaults
Fixes#83938
```rust
#![feature(const_evaluatable_checked, const_generics, const_generics_defaults)]
#![allow(incomplete_features)]
pub struct Bar<const N: usize, const M: usize = { N + 1 }>;
pub fn foo<const N1: usize>() -> Bar<N1> { loop {} }
fn main() {}
```
This PR makes this code no longer ICE, it was ICE'ing previously because when building substs for `Bar<N1>` we would subst the anon ct: `ConstKind::Unevaluated({N + 1}, substs: [N, M])` with substs of `[N1]`. the anon const has forward declared params supplied though so we end up trying to substitute the provided `M` param which causes the ICE.
This PR doesn't handle the predicates of the const so
```rust
trait Foo<const N: usize> { const Assoc: usize; }
pub struct Bar<const N: usize = { <()>::Assoc }> where (): Foo<N>;
```
Resolves to `<() as Foo<N>>::Assoc` which can allow for using fwd declared params indirectly.
```rust
trait Foo<const N: usize> {}
struct Bar<const N: usize = { 2 + 3 }> where (): Foo<N>;
```
This code also ICEs under this PR because instantiating the default's predicates causes an ICE as predicates_of contains predicates with fwd declared params
PR was briefly discussed [in this zulip thread](https://rust-lang.zulipchat.com/#narrow/stream/260443-project-const-generics/topic/evil.20preds.20in.20param.20env.20.2386580)
Fix span when suggesting to add an associated type bound
Fixes#87261
Note that this fix is not perfect, it ~~will still give incorrect~~ won't give suggestions in some situations:
- If the associated type is defined on a supertrait of those contained in the opaque type, it will fallback to the previous behaviour, e.g. if `AssocTy` is defined on the trait `Foo`, `Bar` has `Foo` as supertrait and the opaque type is a `impl Bar + Baz`.
- If the the associated type is defined on a generic trait and the opaque type includes two versions of that generic trait, e.g. the opaque type is `impl Foo<A> + Foo<B>`
Refactor vtable format for upcoming trait_upcasting feature.
This modifies vtable format:
1. reordering occurrence order of methods coming from different traits
2. include `VPtr`s for supertraits where this vtable cannot be directly reused during trait upcasting.
Also, during codegen, the vtables corresponding to these newly included `VPtr` will be requested and generated.
For the cases where this vtable can directly used, now the super trait vtable has exactly the same content to some prefix of this one.
r? `@bjorn3`
cc `@RalfJung`
cc `@rust-lang/wg-traits`
Support HIR wf checking for function signatures
During function type-checking, we normalize any associated types in
the function signature (argument types + return type), and then
create WF obligations for each of the normalized types. The HIR wf code
does not currently support this case, so any errors that we get have
imprecise spans.
This commit extends `ObligationCauseCode::WellFormed` to support
recording a function parameter, allowing us to get the corresponding
HIR type if an error occurs. Function typechecking is modified to
pass this information during signature normalization and WF checking.
The resulting code is fairly verbose, due to the fact that we can
no longer normalize the entire signature with a single function call.
As part of the refactoring, we now perform HIR-based WF checking
for several other 'typed items' (statics, consts, and inherent impls).
As a result, WF and projection errors in a function signature now
have a precise span, which points directly at the responsible type.
If a function signature is constructed via a macro, this will allow
the error message to point at the code 'most responsible' for the error
(e.g. a user-supplied macro argument).
When pretty printing, name placeholders as bound regions
Split from #85499
When we see a placeholder that we are going to print, treat it as a bound var (and add it to a `for<...>`
During function type-checking, we normalize any associated types in
the function signature (argument types + return type), and then
create WF obligations for each of the normalized types. The HIR wf code
does not currently support this case, so any errors that we get have
imprecise spans.
This commit extends `ObligationCauseCode::WellFormed` to support
recording a function parameter, allowing us to get the corresponding
HIR type if an error occurs. Function typechecking is modified to
pass this information during signature normalization and WF checking.
The resulting code is fairly verbose, due to the fact that we can
no longer normalize the entire signature with a single function call.
As part of the refactoring, we now perform HIR-based WF checking
for several other 'typed items' (statics, consts, and inherent impls).
As a result, WF and projection errors in a function signature now
have a precise span, which points directly at the responsible type.
If a function signature is constructed via a macro, this will allow
the error message to point at the code 'most responsible' for the error
(e.g. a user-supplied macro argument).
Better diagnostics with mismatched types due to implicit static lifetime
Fixes#78113
I think this is my first diagnostics PR...definitely happy to hear thoughts on the direction/implementation here.
I was originally just trying to solve the error above, where the lifetime on a GAT was causing a cryptic "mismatched types" error. But as I was writing this, I realized that this (unintentionally) also applied to a different case: `wf-in-foreign-fn-decls-issue-80468.rs`. I'm not sure if this diagnostic should get a new error code, or even reuse an existing one. And, there might be some ways to make this even more generalized. Also, the error is a bit more lengthy and verbose than probably needed. So thoughts there are welcome too.
This PR essentially ended up adding a new nice region error pass that triggers if a type doesn't match the self type of an impl which is selected because of a predicate because of an implicit static bound on that self type.
r? `@estebank`
Don't create references to uninitialized data in `List::from_arena`
Previously `result` and `arena_slice` were references pointing to uninitialized data, which is technically UB. They may have been fine because the pointed data is `Copy` and and they were only written to, but the semantics of this aren't clearly defined yet, and since we have a sound way to do the same thing I don't think we should keep the possibly-unsound way.
Remove nondeterminism in multiple-definitions test
Compare all fields in `DllImport` when sorting to avoid nondeterminism in the error for multiple inconsistent definitions of an extern function. Restore the multiple-definitions test.
Resolves#87084.
Make expansions stable for incr. comp.
This PR aims to make expansions stable for incr. comp. by using the same architecture as definitions:
- the interned identifier `ExpnId` contains a `CrateNum` and a crate-local id;
- bidirectional maps `ExpnHash <-> ExpnId` are setup;
- incr. comp. on-disk cache saves and reconstructs expansions using their `ExpnHash`.
I tried to use as many `LocalExpnId` as I could in the resolver code, but I may have missed a few opportunities.
All this will allow to use an `ExpnId` as a query key, and to force this query without recomputing caller queries. For instance, this will be used to implement #85999.
r? `@petrochenkov`
CTFE/Miri engine Pointer type overhaul
This fixes the long-standing problem that we are using `Scalar` as a type to represent pointers that might be integer values (since they point to a ZST). The main problem is that with int-to-ptr casts, there are multiple ways to represent the same pointer as a `Scalar` and it is unclear if "normalization" (i.e., the cast) already happened or not. This leads to ugly methods like `force_mplace_ptr` and `force_op_ptr`.
Another problem this solves is that in Miri, it would make a lot more sense to have the `Pointer::offset` field represent the full absolute address (instead of being relative to the `AllocId`). This means we can do ptr-to-int casts without access to any machine state, and it means that the overflow checks on pointer arithmetic are (finally!) accurate.
To solve this, the `Pointer` type is made entirely parametric over the provenance, so that we can use `Pointer<AllocId>` inside `Scalar` but use `Pointer<Option<AllocId>>` when accessing memory (where `None` represents the case that we could not figure out an `AllocId`; in that case the `offset` is an absolute address). Moreover, the `Provenance` trait determines if a pointer with a given provenance can be cast to an integer by simply dropping the provenance.
I hope this can be read commit-by-commit, but the first commit does the bulk of the work. It introduces some FIXMEs that are resolved later.
Fixes https://github.com/rust-lang/miri/issues/841
Miri PR: https://github.com/rust-lang/miri/pull/1851
r? `@oli-obk`
Update Rust Float-Parsing Algorithms to use the Eisel-Lemire algorithm.
# Summary
Rust, although it implements a correct float parser, has major performance issues in float parsing. Even for common floats, the performance can be 3-10x [slower](https://arxiv.org/pdf/2101.11408.pdf) than external libraries such as [lexical](https://github.com/Alexhuszagh/rust-lexical) and [fast-float-rust](https://github.com/aldanor/fast-float-rust).
Recently, major advances in float-parsing algorithms have been developed by Daniel Lemire, along with others, and implement a fast, performant, and correct float parser, with speeds up to 1200 MiB/s on Apple's M1 architecture for the [canada](0e2b5d163d/data/canada.txt) dataset, 10x faster than Rust's 130 MiB/s.
In addition, [edge-cases](https://github.com/rust-lang/rust/issues/85234) in Rust's [dec2flt](868c702d0c/library/core/src/num/dec2flt) algorithm can lead to over a 1600x slowdown relative to efficient algorithms. This is due to the use of Clinger's correct, but slow [AlgorithmM and Bellepheron](http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.45.4152&rep=rep1&type=pdf), which have been improved by faster big-integer algorithms and the Eisel-Lemire algorithm, respectively.
Finally, this algorithm provides substantial improvements in the number of floats the Rust core library can parse. Denormal floats with a large number of digits cannot be parsed, due to use of the `Big32x40`, which simply does not have enough digits to round a float correctly. Using a custom decimal class, with much simpler logic, we can parse all valid decimal strings of any digit count.
```rust
// Issue in Rust's dec2fly.
"2.47032822920623272088284396434110686182e-324".parse::<f64>(); // Err(ParseFloatError { kind: Invalid })
```
# Solution
This pull request implements the Eisel-Lemire algorithm, modified from [fast-float-rust](https://github.com/aldanor/fast-float-rust) (which is licensed under Apache 2.0/MIT), along with numerous modifications to make it more amenable to inclusion in the Rust core library. The following describes both features in fast-float-rust and improvements in fast-float-rust for inclusion in core.
**Documentation**
Extensive documentation has been added to ensure the code base may be maintained by others, which explains the algorithms as well as various associated constants and routines. For example, two seemingly magical constants include documentation to describe how they were derived as follows:
```rust
// Round-to-even only happens for negative values of q
// when q ≥ −4 in the 64-bit case and when q ≥ −17 in
// the 32-bitcase.
//
// When q ≥ 0,we have that 5^q ≤ 2m+1. In the 64-bit case,we
// have 5^q ≤ 2m+1 ≤ 2^54 or q ≤ 23. In the 32-bit case,we have
// 5^q ≤ 2m+1 ≤ 2^25 or q ≤ 10.
//
// When q < 0, we have w ≥ (2m+1)×5^−q. We must have that w < 2^64
// so (2m+1)×5^−q < 2^64. We have that 2m+1 > 2^53 (64-bit case)
// or 2m+1 > 2^24 (32-bit case). Hence,we must have 2^53×5^−q < 2^64
// (64-bit) and 2^24×5^−q < 2^64 (32-bit). Hence we have 5^−q < 2^11
// or q ≥ −4 (64-bit case) and 5^−q < 2^40 or q ≥ −17 (32-bitcase).
//
// Thus we have that we only need to round ties to even when
// we have that q ∈ [−4,23](in the 64-bit case) or q∈[−17,10]
// (in the 32-bit case). In both cases,the power of five(5^|q|)
// fits in a 64-bit word.
const MIN_EXPONENT_ROUND_TO_EVEN: i32;
const MAX_EXPONENT_ROUND_TO_EVEN: i32;
```
This ensures maintainability of the code base.
**Improvements for Disguised Fast-Path Cases**
The fast path in float parsing algorithms attempts to use native, machine floats to represent both the significant digits and the exponent, which is only possible if both can be exactly represented without rounding. In practice, this means that the significant digits must be 53-bits or less and the then exponent must be in the range `[-22, 22]` (for an f64). This is similar to the existing dec2flt implementation.
However, disguised fast-path cases exist, where there are few significant digits and an exponent above the valid range, such as `1.23e25`. In this case, powers-of-10 may be shifted from the exponent to the significant digits, discussed at length in https://github.com/rust-lang/rust/issues/85198.
**Digit Parsing Improvements**
Typically, integers are parsed from string 1-at-a-time, requiring unnecessary multiplications which can slow down parsing. An approach to parse 8 digits at a time using only 3 multiplications is described in length [here](https://johnnylee-sde.github.io/Fast-numeric-string-to-int/). This leads to significant performance improvements, and is implemented for both big and little-endian systems.
**Unsafe Changes**
Relative to fast-float-rust, this library makes less use of unsafe functionality and clearly documents it. This includes the refactoring and documentation of numerous unsafe methods undesirably marked as safe. The original code would look something like this, which is deceptively marked as safe for unsafe functionality.
```rust
impl AsciiStr {
#[inline]
pub fn step_by(&mut self, n: usize) -> &mut Self {
unsafe { self.ptr = self.ptr.add(n) };
self
}
}
...
#[inline]
fn parse_scientific(s: &mut AsciiStr<'_>) -> i64 {
// the first character is 'e'/'E' and scientific mode is enabled
let start = *s;
s.step();
...
}
```
The new code clearly documents safety concerns, and does not mark unsafe functionality as safe, leading to better safety guarantees.
```rust
impl AsciiStr {
/// Advance the view by n, advancing it in-place to (n..).
pub unsafe fn step_by(&mut self, n: usize) -> &mut Self {
// SAFETY: same as step_by, safe as long n is less than the buffer length
self.ptr = unsafe { self.ptr.add(n) };
self
}
}
...
/// Parse the scientific notation component of a float.
fn parse_scientific(s: &mut AsciiStr<'_>) -> i64 {
let start = *s;
// SAFETY: the first character is 'e'/'E' and scientific mode is enabled
unsafe {
s.step();
}
...
}
```
This allows us to trivially demonstrate the new implementation of dec2flt is safe.
**Inline Annotations Have Been Removed**
In the previous implementation of dec2flt, inline annotations exist practically nowhere in the entire module. Therefore, these annotations have been removed, which mostly does not impact [performance](https://github.com/aldanor/fast-float-rust/issues/15#issuecomment-864485157).
**Fixed Correctness Tests**
Numerous compile errors in `src/etc/test-float-parse` were present, due to deprecation of `time.clock()`, as well as the crate dependencies with `rand`. The tests have therefore been reworked as a [crate](https://github.com/Alexhuszagh/rust/tree/master/src/etc/test-float-parse), and any errors in `runtests.py` have been patched.
**Undefined Behavior**
An implementation of `check_len` which relied on undefined behavior (in fast-float-rust) has been refactored, to ensure that the behavior is well-defined. The original code is as follows:
```rust
#[inline]
pub fn check_len(&self, n: usize) -> bool {
unsafe { self.ptr.add(n) <= self.end }
}
```
And the new implementation is as follows:
```rust
/// Check if the slice at least `n` length.
fn check_len(&self, n: usize) -> bool {
n <= self.as_ref().len()
}
```
Note that this has since been fixed in [fast-float-rust](https://github.com/aldanor/fast-float-rust/pull/29).
**Inferring Binary Exponents**
Rather than explicitly store binary exponents, this new implementation infers them from the decimal exponent, reducing the amount of static storage required. This removes the requirement to store [611 i16s](868c702d0c/library/core/src/num/dec2flt/table.rs (L8)).
# Code Size
The code size, for all optimizations, does not considerably change relative to before for stripped builds, however it is **significantly** smaller prior to stripping the resulting binaries. These binary sizes were calculated on x86_64-unknown-linux-gnu.
**new**
Using rustc version 1.55.0-dev.
opt-level|size|size(stripped)
|:-:|:-:|:-:|
0|400k|300K
1|396k|292K
2|392k|292K
3|392k|296K
s|396k|292K
z|396k|292K
**old**
Using rustc version 1.53.0-nightly.
opt-level|size|size(stripped)
|:-:|:-:|:-:|
0|3.2M|304K
1|3.2M|292K
2|3.1M|284K
3|3.1M|284K
s|3.1M|284K
z|3.1M|284K
# Correctness
The dec2flt implementation passes all of Rust's unittests and comprehensive float parsing tests, along with numerous other tests such as Nigel Toa's comprehensive float [tests](https://github.com/nigeltao/parse-number-fxx-test-data) and Hrvoje Abraham [strtod_tests](https://github.com/ahrvoje/numerics/blob/master/strtod/strtod_tests.toml). Therefore, it is unlikely that this algorithm will incorrectly round parsed floats.
# Issues Addressed
This will fix and close the following issues:
- resolves#85198
- resolves#85214
- resolves#85234
- fixes#31407
- fixes#31109
- fixes#53015
- resolves#68396
- closes https://github.com/aldanor/fast-float-rust/issues/15
Implementation is based off fast-float-rust, with a few notable changes.
- Some unsafe methods have been removed.
- Safe methods with inherently unsafe functionality have been removed.
- All unsafe functionality is documented and provably safe.
- Extensive documentation has been added for simpler maintenance.
- Inline annotations on internal routines has been removed.
- Fixed Python errors in src/etc/test-float-parse/runtests.py.
- Updated test-float-parse to be a library, to avoid missing rand dependency.
- Added regression tests for #31109 and #31407 in core tests.
- Added regression tests for #31109 and #31407 in ui tests.
- Use the existing slice primitive to simplify shared dec2flt methods
- Remove Miri ignores from dec2flt, due to faster parsing times.
- resolves#85198
- resolves#85214
- resolves#85234
- fixes#31407
- fixes#31109
- fixes#53015
- resolves#68396
- closes https://github.com/aldanor/fast-float-rust/issues/15
Add initial implementation of HIR-based WF checking for diagnostics
During well-formed checking, we walk through all types 'nested' in
generic arguments. For example, WF-checking `Option<MyStruct<u8>>`
will cause us to check `MyStruct<u8>` and `u8`. However, this is done
on a `rustc_middle::ty::Ty`, which has no span information. As a result,
any errors that occur will have a very general span (e.g. the
definintion of an associated item).
This becomes a problem when macros are involved. In general, an
associated type like `type MyType = Option<MyStruct<u8>>;` may
have completely different spans for each nested type in the HIR. Using
the span of the entire associated item might end up pointing to a macro
invocation, even though a user-provided span is available in one of the
nested types.
This PR adds a framework for HIR-based well formed checking. This check
is only run during error reporting, and is used to obtain a more precise
span for an existing error. This is accomplished by individually
checking each 'nested' type in the HIR for the type, allowing us to
find the most-specific type (and span) that produces a given error.
The majority of the changes are to the error-reporting code. However,
some of the general trait code is modified to pass through more
information.
Since this has no soundness implications, I've implemented a minimal
version to begin with, which can be extended over time. In particular,
this only works for HIR items with a corresponding `DefId` (e.g. it will
not work for WF-checking performed within function bodies).
During well-formed checking, we walk through all types 'nested' in
generic arguments. For example, WF-checking `Option<MyStruct<u8>>`
will cause us to check `MyStruct<u8>` and `u8`. However, this is done
on a `rustc_middle::ty::Ty`, which has no span information. As a result,
any errors that occur will have a very general span (e.g. the
definintion of an associated item).
This becomes a problem when macros are involved. In general, an
associated type like `type MyType = Option<MyStruct<u8>>;` may
have completely different spans for each nested type in the HIR. Using
the span of the entire associated item might end up pointing to a macro
invocation, even though a user-provided span is available in one of the
nested types.
This PR adds a framework for HIR-based well formed checking. This check
is only run during error reporting, and is used to obtain a more precise
span for an existing error. This is accomplished by individually
checking each 'nested' type in the HIR for the type, allowing us to
find the most-specific type (and span) that produces a given error.
The majority of the changes are to the error-reporting code. However,
some of the general trait code is modified to pass through more
information.
Since this has no soundness implications, I've implemented a minimal
version to begin with, which can be extended over time. In particular,
this only works for HIR items with a corresponding `DefId` (e.g. it will
not work for WF-checking performed within function bodies).
TAIT: Infer all inference variables in opaque type substitutions via InferCx
The previous algorithm was correct for the example given in its
documentation, but when the TAIT was declared as a free item
instead of an associated item, the generic parameters were the
wrong ones.
cc `@spastorino`
r? `@nikomatsakis`
The previous algorithm was correct for the example given in its
documentation, but when the TAIT was declared as a free item
instead of an associated item, the generic parameters were the
wrong ones.
Replace associated item bound vars with placeholders when projecting
Fixes#76407Fixes#76826
Similar, but more limited, to #85499. This allows us to handle things like `for<'a> <T as Trait>::Assoc<'a>` but not `for<'a> <T as Trait<'a>>::Assoc`, unblocking GATs.
r? `@nikomatsakis`
Add -Zfuture-incompat-test to assist with testing future-incompat reports.
This adds a `-Zfuture-incompat-test` cli flag to assist with testing future-incompatible reports. This flag causes all lints to be treated as a future-incompatible lint, and will emit a report for them. This is being added so that Cargo's testsuite can reliably test the reporting infrastructure. Right now, Cargo relies on using array_into_iter as a test subject. Since the breaking "future incompatible" lints are never intended to last forever, this means Cargo's testsuite would always need to keep changing to choose different lints (for example, #86330 proposed dropping that moniker for array_into_iter). With this flag, Cargo's tests can trigger any lint and check for the report.
This resolves all the problems we had around "normalizing" the representation of a Scalar in case it carries a Pointer value: we can just use Pointer if we want to have a value taht we are sure is already normalized.
CTFE engine: small cleanups
I noticed these while preparing a large PR, and figured I'd better send them ahead to not muddy the diff unnecessarily.
- remove remaining use of Pointer in Allocation API (I missed those in https://github.com/rust-lang/rust/pull/85472)
- remove unnecessary deallocate_local hack (this logic does not seem necessary any more)
r? `@oli-obk`
Simplify future incompatible reporting.
This simplifies the implementation of the future incompatible reporting system. Instead of having a separate field in the future_incompatible definition, this reuses the `FutureIncompatibilityReason` enum. It also drops the "date" field. Cargo does not use the date field, and there isn't much of a need for this to be structured, and I am skeptical that the date can be predicted reliably. The date or release version can be listed in the lint text if desired.
Revert the revert of renaming traits::VTable to ImplSource
As #72114 and #73055 were merged so closely together I think this
accidentally happened while rebasing
Support forwarding caller location through trait object method call
Since PR #69251, the `#[track_caller]` attribute has been supported on
traits. However, it only has an effect on direct (monomorphized) method
calls. Calling a `#[track_caller]` method on a trait object will *not*
propagate caller location information - instead, `Location::caller()` will
return the location of the method definition.
This PR forwards caller location information when `#[track_caller]` is
present on the method definition in the trait. This is possible because
`#[track_caller]` in this position is 'inherited' by any impls of that
trait, so all implementations will have the same ABI.
This PR does *not* change the behavior in the case where
`#[track_caller]` is present only on the impl of a trait.
While all implementations of the method might have an explicit
`#[track_caller]`, we cannot know this at codegen time, since other
crates may have impls of the trait. Therefore, we keep the current
behavior of not forwarding the caller location, ensuring that all
implementations of the trait will have the correct ABI.
See the modified test for examples of how this works
Add support for raw-dylib with stdcall, fastcall functions
Next stage of work for #58713: allow `extern "stdcall"` and `extern "fastcall"` with `#[link(kind = "raw-dylib")]`.
I've deliberately omitted support for vectorcall, as that doesn't currently work, and I wanted to get this out for review. (I haven't really investigated the vectorcall failure much yet, but at first (very cursory) glance it appears that the problem is elsewhere.)
- Closures in external crates may get compiled in because of
monomorphization. We should store names of captured variables
in `optimized_mir`, so that they are written into the metadata
file and we can use them to generate debuginfo.
- If there are breakpoints inside closures, the names of captured
variables stored in `optimized_mir` can be used to print them.
Now the name is more precise when disjoint fields are captured.
Previously, debuggers print closures as something like
```
y::main::closure-0 (0x7fffffffdd34)
```
The pointer actually references to an upvar. It is not
very obvious, especially for beginners.
It's because upvars don't have names before, as they
are packed into a tuple. This commit names the upvars,
so we can expect to see something like
```
y::main::closure-0 {_captured_ref__b: 0x[...]}
```
The `large_assignments` lints detects moves over specified limit. The
limit is configured through `move_size_limit = "N"` attribute placed at
the root of a crate. When attribute is absent, the lint is disabled.
Make it possible to enable the lint without making any changes to the
source code, through a new flag `-Zmove-size-limit=N`. For example, to
detect moves exceeding 1023 bytes in a cargo crate, including all
dependencies one could use:
```
$ env RUSTFLAGS=-Zmove-size-limit=1024 cargo build -vv
```
Query-ify global limit attribute handling
Currently, we read various 'global limits' from inner attributes the crate root (`recursion_limit`, `move_size_limit`, `type_length_limit`, `const_eval_limit`). These limits are then stored in `Sessions`, allowing them to be access from a `TyCtxt` without registering a dependency on the crate root attributes.
This PR moves the calculation of these global limits behind queries, so that we properly track dependencies on crate root attributes. During the setup of macro expansion (before we've created a `TyCtxt`), we need to access the recursion limit, which is now done by directly calling into the code shared by the normal query implementations.
Hack: Ignore inference variables in certain queries
Fixes#84841Fixes#86753
Some queries are not built to accept types with inference variables, which can lead to ICEs. These queries probably ought to be converted to canonical form, but as a quick workaround, we can return conservative results in the case that inference variables are found.
We should file a follow-up issue (and update the FIXMEs...) to do the proper refactoring.
cc `@arora-aman`
r? `@oli-obk`
Support allocation failures when interpreting MIR
This closes#79601 by handling the case where memory allocation fails during MIR interpretation, and translates that failure into an `InterpError`. The error message is "tried to allocate more memory than available to compiler" to make it clear that the memory shortage is happening at compile-time by the compiler itself, and that it is not a runtime issue.
Now that memory allocation can fail, it would be neat if Miri could simulate low-memory devices to make it easy to see how much memory a Rust program needs.
Note that this breaks Miri because it assumes that allocation can never fail.
Fix ICE when `main` is declared in an `extern` block
Changes in #84401 to implement `imported_main` changed how the crate entry point is found, and a declared `main` in an `extern` block was detected erroneously. This was causing the ICE described in #86110.
This PR adds a check for this case and emits an error instead. Previously a `main` declaration in an `extern` block was not detected as an entry point at all, so emitting an error shouldn't break anything that worked previously. In 1.52.1 stable this is demonstrated, with a `` `main` function not found`` error.
Fixes#86110
Introduce -Zprofile-closures to evaluate the impact of 2229
This creates a CSV with name "closure_profile_XXXXX.csv", where the
variable part is the process id of the compiler.
To profile a cargo project you can run one of the following depending on
if you're compiling a library or a binary:
```
cargo +nightly rustc --lib -- -Zprofile-closures
cargo +nightly rustc --bin {binary_name} -- -Zprofile-closures
```
r? `@nikomatsakis`
Change vtable memory representation to use tcx allocated allocations.
This fixes https://github.com/rust-lang/rust/issues/86324. However i suspect there's more to change before it can land.
r? `@bjorn3`
cc `@rust-lang/miri`
Turn non_fmt_panic into a future_incompatible edition lint.
This turns the `non_fmt_panic` lint into a future_incompatible edition lint, so it becomes part of the `rust_2021_compatibility` group. See https://github.com/rust-lang/rust/issues/85894.
This lint produces both warnings about semantical changes (e.g. `panic!("{{")`) and things that will become hard errors (e.g. `panic!("{")`). So I added a `explain_reason: false` that supresses the default "this will become a hard error" or "the semantics will change" message, and instead added a note depending on the situation. (cc `@rylev)`
r? `@nikomatsakis`
This creates a CSV with name "closure_profile_XXXXX.csv", where the
variable part is the process id of the compiler.
To profile a cargo project you can run one of the following depending on
if you're compiling a library or a binary:
```
cargo +stage1 rustc --lib -- -Zprofile-closures
cargo +stage1 rustc --bin -- -Zprofile-closures
```
Use HTTPS links where possible
While looking at #86583, I wondered how many other (insecure) HTTP links were in `rustc`. This changes most other `http` links to `https`. While most of the links are in comments or documentation, there are a few other HTTP links that are used by CI that are changed to HTTPS.
Notes:
- I didn't change any to or in licences
- Some links don't support HTTPS :(
- Some `http` links were dead, in those cases I upgraded them to their new places (all of which used HTTPS)