Commit Graph

6 Commits

Author SHA1 Message Date
Alex Crichton
56290a0044 std: Stabilize the prelude module
This commit is an implementation of [RFC 503][rfc] which is a stabilization
story for the prelude. Most of the RFC was directly applied, removing reexports.
Some reexports are kept around, however:

* `range` remains until range syntax has landed to reduce churn.
* `Path` and `GenericPath` remain until path reform lands. This is done to
  prevent many imports of `GenericPath` which will soon be removed.
* All `io` traits remain until I/O reform lands so imports can be rewritten all
  at once to `std::io::prelude::*`.

This is a breaking change because many prelude reexports have been removed, and
the RFC can be consulted for the exact list of removed reexports, as well as to
find the locations of where to import them.

[rfc]: https://github.com/rust-lang/rfcs/blob/master/text/0503-prelude-stabilization.md
[breaking-change]

Closes #20068
2015-01-02 08:54:06 -08:00
Patrick Walton
ddb2466f6a librustc: Always parse macro!()/macro![] as expressions if not
followed by a semicolon.

This allows code like `vec![1i, 2, 3].len();` to work.

This breaks code that uses macros as statements without putting
semicolons after them, such as:

    fn main() {
        ...
        assert!(a == b)
        assert!(c == d)
        println(...);
    }

It also breaks code that uses macros as items without semicolons:

    local_data_key!(foo)

    fn main() {
        println("hello world")
    }

Add semicolons to fix this code. Those two examples can be fixed as
follows:

    fn main() {
        ...
        assert!(a == b);
        assert!(c == d);
        println(...);
    }

    local_data_key!(foo);

    fn main() {
        println("hello world")
    }

RFC #378.

Closes #18635.

[breaking-change]
2014-12-18 12:09:07 -05:00
Niko Matsakis
5c3d398919 Mostly rote conversion of proc() to move|| (and occasionally Thunk::new) 2014-12-14 04:21:56 -05:00
Manish Goregaokar
713e87526e Use new attribute syntax in python files in src/etc too (#13478) 2014-04-14 21:00:31 +05:30
Alex Crichton
cc6ec8df95 log: Introduce liblog, the old std::logging
This commit moves all logging out of the standard library into an external
crate. This crate is the new crate which is responsible for all logging macros
and logging implementation. A few reasons for this change are:

* The crate map has always been a bit of a code smell among rust programs. It
  has difficulty being loaded on almost all platforms, and it's used almost
  exclusively for logging and only logging. Removing the crate map is one of the
  end goals of this movement.

* The compiler has a fair bit of special support for logging. It has the
  __log_level() expression as well as generating a global word per module
  specifying the log level. This is unfairly favoring the built-in logging
  system, and is much better done purely in libraries instead of the compiler
  itself.

* Initialization of logging is much easier to do if there is no reliance on a
  magical crate map being available to set module log levels.

* If the logging library can be written outside of the standard library, there's
  no reason that it shouldn't be. It's likely that we're not going to build the
  highest quality logging library of all time, so third-party libraries should
  be able to provide just as high-quality logging systems as the default one
  provided in the rust distribution.

With a migration such as this, the change does not come for free. There are some
subtle changes in the behavior of liblog vs the previous logging macros:

* The core change of this migration is that there is no longer a physical
  log-level per module. This concept is still emulated (it is quite useful), but
  there is now only a global log level, not a local one. This global log level
  is a reflection of the maximum of all log levels specified. The previously
  generated logging code looked like:

    if specified_level <= __module_log_level() {
        println!(...)
    }

  The newly generated code looks like:

    if specified_level <= ::log::LOG_LEVEL {
        if ::log::module_enabled(module_path!()) {
            println!(...)
        }
    }

  Notably, the first layer of checking is still intended to be "super fast" in
  that it's just a load of a global word and a compare. The second layer of
  checking is executed to determine if the current module does indeed have
  logging turned on.

  This means that if any module has a debug log level turned on, all modules
  with debug log levels get a little bit slower (they all do more expensive
  dynamic checks to determine if they're turned on or not).

  Semantically, this migration brings no change in this respect, but
  runtime-wise, this will have a perf impact on some code.

* A `RUST_LOG=::help` directive will no longer print out a list of all modules
  that can be logged. This is because the crate map will no longer specify the
  log levels of all modules, so the list of modules is not known. Additionally,
  warnings can no longer be provided if a malformed logging directive was
  supplied.

The new "hello world" for logging looks like:

    #[phase(syntax, link)]
    extern crate log;

    fn main() {
        debug!("Hello, world!");
    }
2014-03-15 22:26:36 -07:00
Huon Wilson
6757053cff syntax: allow stmt/expr macro invocations to be delimited by {}.
This makes using control-flow-y macros like `spawn! { ... }` more fluent
and natural.

cc #11892.
2014-02-24 21:22:27 -08:00