Suggest borrowing on fn argument that is `impl AsRef`
When encountering a move conflict, on an expression that is `!Copy` passed as an argument to an `fn` that is `impl AsRef`, suggest borrowing the expression.
```
error[E0382]: use of moved value: `bar`
--> f204.rs:14:15
|
12 | let bar = Bar;
| --- move occurs because `bar` has type `Bar`, which does not implement the `Copy` trait
13 | foo(bar);
| --- value moved here
14 | let baa = bar;
| ^^^ value used here after move
|
help: borrow the value to avoid moving it
|
13 | foo(&bar);
| +
```
Fix#41708
When we have long code skips, we write `...` in the line number gutter.
For suggestions, we were "centering" the `...` with the line, but that was consistent with what we do in every other case.
When encountering a move conflict, on an expression that is `!Copy` passed as an argument to an `fn` that is `impl AsRef`, suggest borrowing the expression.
```
error[E0382]: use of moved value: `bar`
--> f204.rs:14:15
|
12 | let bar = Bar;
| --- move occurs because `bar` has type `Bar`, which does not implement the `Copy` trait
13 | foo(bar);
| --- value moved here
14 | let baa = bar;
| ^^^ value used here after move
|
help: borrow the value to avoid moving it
|
13 | foo(&bar);
| +
```
Fix#41708
```
error[E0382]: use of moved value: `t`
--> $DIR/use_of_moved_value_copy_suggestions.rs:7:9
|
LL | fn duplicate_t<T>(t: T) -> (T, T) {
| - move occurs because `t` has type `T`, which does not implement the `Copy` trait
...
LL | (t, t)
| - ^ value used here after move
| |
| value moved here
|
help: if `T` implemented `Clone`, you could clone the value
--> $DIR/use_of_moved_value_copy_suggestions.rs:4:16
|
LL | fn duplicate_t<T>(t: T) -> (T, T) {
| ^ consider constraining this type parameter with `Clone`
...
LL | (t, t)
| - you could clone this value
help: consider restricting type parameter `T`
|
LL | fn duplicate_t<T: Copy>(t: T) -> (T, T) {
| ++++++
```
The `help` is new. On ADTs, we also extend the output with span labels:
```
error[E0507]: cannot move out of static item `FOO`
--> $DIR/issue-17718-static-move.rs:6:14
|
LL | let _a = FOO;
| ^^^ move occurs because `FOO` has type `Foo`, which does not implement the `Copy` trait
|
note: if `Foo` implemented `Clone`, you could clone the value
--> $DIR/issue-17718-static-move.rs:1:1
|
LL | struct Foo;
| ^^^^^^^^^^ consider implementing `Clone` for this type
...
LL | let _a = FOO;
| --- you could clone this value
help: consider borrowing here
|
LL | let _a = &FOO;
| +
```
Detect borrow checker errors where `.clone()` would be an appropriate user action
When a value is moved twice, suggest cloning the earlier move:
```
error[E0509]: cannot move out of type `U2`, which implements the `Drop` trait
--> $DIR/union-move.rs:49:18
|
LL | move_out(x.f1_nocopy);
| ^^^^^^^^^^^
| |
| cannot move out of here
| move occurs because `x.f1_nocopy` has type `ManuallyDrop<RefCell<i32>>`, which does not implement the `Copy` trait
|
help: consider cloning the value if the performance cost is acceptable
|
LL | move_out(x.f1_nocopy.clone());
| ++++++++
```
When a value is borrowed by an `fn` call, consider if cloning the result of the call would be reasonable, and suggest cloning that, instead of the argument:
```
error[E0505]: cannot move out of `a` because it is borrowed
--> $DIR/variance-issue-20533.rs:53:14
|
LL | let a = AffineU32(1);
| - binding `a` declared here
LL | let x = bat(&a);
| -- borrow of `a` occurs here
LL | drop(a);
| ^ move out of `a` occurs here
LL | drop(x);
| - borrow later used here
|
help: consider cloning the value if the performance cost is acceptable
|
LL | let x = bat(&a).clone();
| ++++++++
```
otherwise, suggest cloning the argument:
```
error[E0505]: cannot move out of `a` because it is borrowed
--> $DIR/variance-issue-20533.rs:59:14
|
LL | let a = ClonableAffineU32(1);
| - binding `a` declared here
LL | let x = foo(&a);
| -- borrow of `a` occurs here
LL | drop(a);
| ^ move out of `a` occurs here
LL | drop(x);
| - borrow later used here
|
help: consider cloning the value if the performance cost is acceptable
|
LL - let x = foo(&a);
LL + let x = foo(a.clone());
|
```
This suggestion doesn't attempt to square out the types between what's cloned and what the `fn` expects, to allow the user to make a determination on whether to change the `fn` call or `fn` definition themselves.
Special case move errors caused by `FnOnce`:
```
error[E0382]: use of moved value: `blk`
--> $DIR/once-cant-call-twice-on-heap.rs:8:5
|
LL | fn foo<F:FnOnce()>(blk: F) {
| --- move occurs because `blk` has type `F`, which does not implement the `Copy` trait
LL | blk();
| ----- `blk` moved due to this call
LL | blk();
| ^^^ value used here after move
|
note: `FnOnce` closures can only be called once
--> $DIR/once-cant-call-twice-on-heap.rs:6:10
|
LL | fn foo<F:FnOnce()>(blk: F) {
| ^^^^^^^^ `F` is made to be an `FnOnce` closure here
LL | blk();
| ----- this value implements `FnOnce`, which causes it to be moved when called
```
Account for redundant `.clone()` calls in resulting suggestions:
```
error[E0507]: cannot move out of dereference of `S`
--> $DIR/needs-clone-through-deref.rs:15:18
|
LL | for _ in self.clone().into_iter() {}
| ^^^^^^^^^^^^ ----------- value moved due to this method call
| |
| move occurs because value has type `Vec<usize>`, which does not implement the `Copy` trait
|
note: `into_iter` takes ownership of the receiver `self`, which moves value
--> $SRC_DIR/core/src/iter/traits/collect.rs:LL:COL
help: you can `clone` the value and consume it, but this might not be your desired behavior
|
LL | for _ in <Vec<usize> as Clone>::clone(&self).into_iter() {}
| ++++++++++++++++++++++++++++++ ~
```
We use the presence of `&mut` values in a move error as a proxy for the user caring about side effects, so we don't emit a clone suggestion in that case:
```
error[E0505]: cannot move out of `s` because it is borrowed
--> $DIR/borrowck-overloaded-index-move-index.rs:53:7
|
LL | let mut s = "hello".to_string();
| ----- binding `s` declared here
LL | let rs = &mut s;
| ------ borrow of `s` occurs here
...
LL | f[s] = 10;
| ^ move out of `s` occurs here
...
LL | use_mut(rs);
| -- borrow later used here
```
We properly account for `foo += foo;` errors where we *don't* suggest `foo.clone() += foo;`, instead suggesting `foo += foo.clone();`.
---
Each commit can be reviewed in isolation. There are some "cleanup" commits, but kept them separate in order to show *why* specific changes were being made, and their effect on tests' output.
Fix#49693, CC #64167.
```
error[E0507]: cannot move out of `*x` which is behind a shared reference
--> $DIR/borrowck-fn-in-const-a.rs:6:16
|
LL | return *x
| ^^ move occurs because `*x` has type `String`, which does not implement the `Copy` trait
|
help: consider cloning the value if the performance cost is acceptable
|
LL - return *x
LL + return x.clone()
|
```
Unify the output of `suggest_assign_value` and `ty_kind_suggestion`.
Ideally we'd make these a single function, but doing so would likely require modify the crate dependency tree.
Sometimes move errors are because of a misplaced `continue`, but we didn't
surface that anywhere. Now when there are more than one set of nested loops
we show them out and point at the `continue` and `break` expressions within
that might need to go elsewhere.
```
error[E0382]: use of moved value: `foo`
--> $DIR/nested-loop-moved-value-wrong-continue.rs:46:18
|
LL | for foo in foos {
| ---
| |
| this reinitialization might get skipped
| move occurs because `foo` has type `String`, which does not implement the `Copy` trait
...
LL | for bar in &bars {
| ---------------- inside of this loop
...
LL | baz.push(foo);
| --- value moved here, in previous iteration of loop
...
LL | qux.push(foo);
| ^^^ value used here after move
|
note: verify that your loop breaking logic is correct
--> $DIR/nested-loop-moved-value-wrong-continue.rs:41:17
|
LL | for foo in foos {
| ---------------
...
LL | for bar in &bars {
| ----------------
...
LL | continue;
| ^^^^^^^^ this `continue` advances the loop at line 33
help: consider moving the expression out of the loop so it is only moved once
|
LL ~ let mut value = baz.push(foo);
LL ~ for bar in &bars {
LL |
...
LL | if foo == *bar {
LL ~ value;
|
help: consider cloning the value if the performance cost is acceptable
|
LL | baz.push(foo.clone());
| ++++++++
```
Fix#92531.
When encountering a move error on a value within a loop of any kind,
identify if the moved value belongs to a call expression that should not
be cloned and avoid the semantically incorrect suggestion. Also try to
suggest moving the call expression outside of the loop instead.
```
error[E0382]: use of moved value: `vec`
--> $DIR/recreating-value-in-loop-condition.rs:6:33
|
LL | let vec = vec!["one", "two", "three"];
| --- move occurs because `vec` has type `Vec<&str>`, which does not implement the `Copy` trait
LL | while let Some(item) = iter(vec).next() {
| ----------------------------^^^--------
| | |
| | value moved here, in previous iteration of loop
| inside of this loop
|
note: consider changing this parameter type in function `iter` to borrow instead if owning the value isn't necessary
--> $DIR/recreating-value-in-loop-condition.rs:1:17
|
LL | fn iter<T>(vec: Vec<T>) -> impl Iterator<Item = T> {
| ---- ^^^^^^ this parameter takes ownership of the value
| |
| in this function
help: consider moving the expression out of the loop so it is only moved once
|
LL ~ let mut value = iter(vec);
LL ~ while let Some(item) = value.next() {
|
```
We use the presence of a `break` in the loop that would be affected by
the moved value as a heuristic for "shouldn't be cloned".
Fix#121466.
This commit is extracted from #122036 and adds a new directive to the
`compiletest` test runner, `//@ needs-threads`. This is intended to
capture the need that a target must implement threading to execute a
specific test, typically one that uses `std::thread`. This is primarily
done for WebAssembly targets which currently do not have threads by
default. This enables transitioning a lot of `//@ ignore-wasm*`-style
ignores into a more self-documenting `//@ needs-threads` directive.
Additionally the `wasm32-wasi-preview1-threads` target, for example,
does actually have threads, but isn't tested in CI at this time. This
change enables running these tests for that target, but not other wasm
targets.
detects redundant imports that can be eliminated.
for #117772 :
In order to facilitate review and modification, split the checking code and
removing redundant imports code into two PR.
When encountering a case where `let x: T = (val: &T).clone();` and
`T: !Clone`, already mention that the reference is being cloned. We now
also suggest `#[derive(Clone)]` not only on `T` but also on type
parameters to satisfy blanket implementations.
```
error[E0308]: mismatched types
--> $DIR/assignment-of-clone-call-on-ref-due-to-missing-bound.rs:17:39
|
LL | let mut x: HashSet<Day> = v.clone();
| ------------ ^^^^^^^^^ expected `HashSet<Day>`, found `&HashSet<Day>`
| |
| expected due to this
|
= note: expected struct `HashSet<Day>`
found reference `&HashSet<Day>`
note: `HashSet<Day>` does not implement `Clone`, so `&HashSet<Day>` was cloned instead
--> $DIR/assignment-of-clone-call-on-ref-due-to-missing-bound.rs:17:39
|
LL | let mut x: HashSet<Day> = v.clone();
| ^
= help: `Clone` is not implemented because the trait bound `Day: Clone` is not satisfied
help: consider annotating `Day` with `#[derive(Clone)]`
|
LL + #[derive(Clone)]
LL | enum Day {
|
```
Case taken from # #41825.
When encountering a move error, look for implementations of `Clone` for
the moved type. If there is one, check if all its obligations are met.
If they are, we suggest cloning without caveats. If they aren't, we
suggest cloning while mentioning the unmet obligations, potentially
suggesting `#[derive(Clone)]` when appropriate.
```
error[E0507]: cannot move out of a shared reference
--> $DIR/suggest-clone-when-some-obligation-is-unmet.rs:20:28
|
LL | let mut copy: Vec<U> = map.clone().into_values().collect();
| ^^^^^^^^^^^ ------------- value moved due to this method call
| |
| move occurs because value has type `HashMap<T, U, Hash128_1>`, which does not implement the `Copy` trait
|
note: `HashMap::<K, V, S>::into_values` takes ownership of the receiver `self`, which moves value
--> $SRC_DIR/std/src/collections/hash/map.rs:LL:COL
help: you could `clone` the value and consume it, if the `Hash128_1: Clone` trait bound could be satisfied
|
LL | let mut copy: Vec<U> = <HashMap<T, U, Hash128_1> as Clone>::clone(&map.clone()).into_values().collect();
| ++++++++++++++++++++++++++++++++++++++++++++ +
help: consider annotating `Hash128_1` with `#[derive(Clone)]`
|
LL + #[derive(Clone)]
LL | pub struct Hash128_1;
|
```
Fix#109429.
When going through auto-deref, the `<T as Clone>` impl sometimes needs
to be specified for rustc to actually clone the value and not the
reference.
```
error[E0507]: cannot move out of dereference of `S`
--> $DIR/needs-clone-through-deref.rs:15:18
|
LL | for _ in self.clone().into_iter() {}
| ^^^^^^^^^^^^ ----------- value moved due to this method call
| |
| move occurs because value has type `Vec<usize>`, which does not implement the `Copy` trait
|
note: `into_iter` takes ownership of the receiver `self`, which moves value
--> $SRC_DIR/core/src/iter/traits/collect.rs:LL:COL
help: you can `clone` the value and consume it, but this might not be your desired behavior
|
LL | for _ in <Vec<usize> as Clone>::clone(&self.clone()).into_iter() {}
| ++++++++++++++++++++++++++++++ +
```
CC #109429.
The code originally correctly erased the regions of the type it passed
to the newly created infcx. But after the `fn_sig` query was made to
return an `EarlyBinder<T>`, some substs that were around were
substituted there without erasing their regions. They were then passed
into the newly cerated infcx, which caused the ICE.