Some cleanups around diagnostic levels.
Plus some refactoring in and around diagnostic levels and emission. Details in the individual commit logs.
r? ````@oli-obk````
The two kinds of delayed bug have quite different semantics so a
stronger conceptual separation is nice. (`is_error` is a good example,
because the two kinds have different behaviour.)
The commit also moves the `DelayedBug` variant after `Error` in `Level`,
to reflect the fact that it's weaker than `Error` -- it might trigger an
error but also might not. (The pre-existing `downgrade_to_delayed_bug`
function also reflects the notion that delayed bugs are lower/after
normal errors.)
Plus it condenses some of the comments on `Level` into a table, for
easier reading, and introduces `can_be_top_or_sub` to indicate which
levels can be used in top-level diagnostics vs. subdiagnostics.
Finally, it renames `DiagCtxtInner::span_delayed_bugs` as
`DiagCtxtInner::delayed_bugs`. The `span_` prefix is unnecessary because
some delayed bugs don't have a span.
```
error[E0277]: the size for values of type `[i32]` cannot be known at compilation time
--> f100.rs:2:33
|
2 | let _ = std::mem::size_of::<[i32]>();
| ^^^^^ doesn't have a size known at compile-time
|
= help: the trait `Sized` is not implemented for `[i32]`
note: required by an implicit `Sized` bound in `std::mem::size_of`
--> /home/gh-estebank/rust/library/core/src/mem/mod.rs:312:22
|
312 | pub const fn size_of<T>() -> usize {
| ^ required by the implicit `Sized` requirement on this bound in `size_of`
```
Fix#120178.
Expand the primary span of E0277 when the immediate unmet bound is not what the user wrote:
```
error[E0277]: the trait bound `i32: Bar` is not satisfied
--> f100.rs:6:6
|
6 | <i32 as Foo>::foo();
| ^^^ the trait `Bar` is not implemented for `i32`, which is required by `i32: Foo`
|
help: this trait has no implementations, consider adding one
--> f100.rs:2:1
|
2 | trait Bar {}
| ^^^^^^^^^
note: required for `i32` to implement `Foo`
--> f100.rs:3:14
|
3 | impl<T: Bar> Foo for T {}
| --- ^^^ ^
| |
| unsatisfied trait bound introduced here
```
Fix#40120.
Deduplicate more sized errors on call exprs
Change the implicit `Sized` `Obligation` `Span` for call expressions to include the whole expression. This aids the existing deduplication machinery to reduce the number of errors caused by a single unsized expression.
When encountering a type mismatch error involving `dyn Trait`, mention
the existence of boxed trait objects if the other type involved
implements `Trait`.
Partially addresses #102629.
Change the implicit `Sized` `Obligation` `Span` for call expressions to
include the whole expression. This aids the existing deduplication
machinery to reduce the number of errors caused by a single unsized
expression.
Silence some follow-up errors [3/x]
this is one piece of the requested cleanups from https://github.com/rust-lang/rust/pull/117449
Keep error types around, even in obligations.
These help silence follow-up errors, as we now figure out that some types (most notably inference variables) are equal to an error type.
But it also allows figuring out more types in the presence of errors, possibly causing more errors.
`-Ztreat-err-as-bug` treats normal errors and delayed bugs equally,
which can lead to some really surprising results.
This commit changes `-Ztreat-err-as-bug` so it ignores delayed bugs,
unless they get promoted to proper bugs and are printed.
This feels to me much simpler and more logical. And it simplifies the
implementation:
- The `-Ztreat-err-as-bug` check is removed from in
`DiagCtxt::{delayed_bug,span_delayed_bug}`.
- `treat_err_as_bug` doesn't need to count delayed bugs.
- The `-Ztreat-err-as-bug` panic message is simpler, because it doesn't
have to mention delayed bugs.
Output of delayed bugs is now more consistent. They're always printed
the same way. Previously when they triggered `-Ztreat-err-as-bug` they
would be printed slightly differently, via `span_bug` in
`span_delayed_bug` or `delayed_bug`.
A minor behaviour change: the "no errors encountered even though
`span_delayed_bug` issued" printed before delayed bugs is now a note
rather than a bug. This is done so it doesn't get counted as an error
that might trigger `-Ztreat-err-as-bug`, which would be silly.
This means that if you use `-Ztreat-err-as-bug=1` and there are no
normal errors but there are delayed bugs, the first delayed bug will be
shown (and the panic will happen after it's printed).
Also, I have added a second note saying "those delayed bugs will now be
shown as internal compiler errors". I think this makes it clearer what
is happening, because the whole concept of delayed bugs is non-obvious.
There are some test changes.
- equality-in-canonical-query.rs: Minor output changes, and the error
count reduces by one because the "no errors encountered even though
`span_delayed_bug` issued" message is no longer counted as an error.
- rpit_tait_equality_in_canonical_query.rs: Ditto.
- storage-live.rs: The query stack disappears because these delayed bugs
are now printed at the end, rather than when they are created.
- storage-return.rs, span_delayed_bug.rs: now need
`-Zeagerly-emit-delayed-bugs` because they need the delayed bugs
emitted immediately to preserve behaviour.
Remove special-casing around `AliasKind::Opaque` when structurally resolving in new solver
This fixes a few inconsistencies around where we don't eagerly resolve opaques to their (locally-defined) hidden types in the new solver. It essentially allows this code to work:
```rust
fn main() {
type Tait = impl Sized;
struct S {
i: i32,
}
let x: Tait = S { i: 0 };
println!("{}", x.i);
}
```
Since `Tait` is defined in `main`, we are able to poke through the type of `x` with deref.
r? lcnr
Errors in `DiagCtxtInner::emit_diagnostic` are never set to
`Level::Bug`, because the condition never succeeds, because
`self.treat_err_as_bug()` is called *before* the error counts are
incremented.
This commit switches to `self.treat_next_err_as_bug()`, fixing the
problem. This changes the error message output to actually say "internal
compiler error".
Add regression test for #106630
This PR adds a regression test for #106630. I was unsure where exactly to place the test or how to test it locally so please let me know if I should change something.
On borrow return type, suggest borrowing from arg or owned return type
When we encounter a function with a return type that has an anonymous lifetime with no argument to borrow from, besides suggesting the `'static` lifetime we now also suggest changing the arguments to be borrows or changing the return type to be an owned type.
```
error[E0106]: missing lifetime specifier
--> $DIR/variadic-ffi-6.rs:7:6
|
LL | ) -> &usize {
| ^ expected named lifetime parameter
|
= help: this function's return type contains a borrowed value, but there is no value for it to be borrowed from
help: consider using the `'static` lifetime, but this is uncommon unless you're returning a borrowed value from a `const` or a `static`
|
LL | ) -> &'static usize {
| +++++++
help: instead, you are more likely to want to change one of the arguments to be borrowed...
|
LL | x: &usize,
| +
help: ...or alternatively, to want to return an owned value
|
LL - ) -> &usize {
LL + ) -> usize {
|
```
Fix#85843.