Add support for making lib features internal
We have the notion of an "internal" lang feature: a feature that is never intended to be stabilized, and using which can cause ICEs and other issues without that being considered a bug.
This extends that idea to lib features as well. It is an alternative to https://github.com/rust-lang/rust/pull/115623: instead of using an attribute to declare lib features internal, we simply do this based on the name. Everything ending in `_internals` or `_internal` is considered internal.
Then we rename `core_intrinsics` to `core_intrinsics_internal`, which fixes https://github.com/rust-lang/rust/issues/115597.
Cut code size for feature hashing
This locally cuts ~32 kB of .text instructions.
This isn't really a clear win in terms of readability. IMO the code size benefits are worth it (even if they're not necessarily present in the x86_64 hyperoptimized build, I expect them to translate similarly to other platforms). Ultimately there's lots of "small ish" low hanging fruit like this that I'm seeing that seems worth tackling to me, and could translate into larger wins in aggregate.
Call FileEncoder::finish in rmeta encoding
Fixes https://github.com/rust-lang/rust/issues/117254
The bug here was that rmeta encoding never called FileEncoder::finish. Now it does. Most of the changes here are needed to support that, since rmeta encoding wants to finish _then_ access the File in the encoder, so finish can't move out.
I tried adding a `cfg(debug_assertions)` exploding Drop impl to FileEncoder that checked for finish being called before dropping, but fatal errors cause unwinding so this isn't really possible. If we encounter a fatal error with a dirty FileEncoder, the Drop impl ICEs even though the implementation is correct. If we try to paper over that by wrapping FileEncoder in ManuallyDrop then that just erases the fact that Drop automatically checks that we call finish on all paths.
I also changed the name of DepGraph::encode to DepGraph::finish_encoding, because that's what it does and it makes the fact that it is the path to FileEncoder::finish less confusing.
r? `@WaffleLapkin`
Currently we always do this:
```
use rustc_fluent_macro::fluent_messages;
...
fluent_messages! { "./example.ftl" }
```
But there is no need, we can just do this everywhere:
```
rustc_fluent_macro::fluent_messages! { "./example.ftl" }
```
which is shorter.
The `fluent_messages!` macro produces uses of
`crate::{D,Subd}iagnosticMessage`, which means that every crate using
the macro must have this import:
```
use rustc_errors::{DiagnosticMessage, SubdiagnosticMessage};
```
This commit changes the macro to instead use
`rustc_errors::{D,Subd}iagnosticMessage`, which avoids the need for the
imports.
print query map for deadlock when using parallel front end
print query map for deadlock when using parallel front end, so that we can analyze where and why deadlock occurs
By default, `newtype_index!` types get a default `Encodable`/`Decodable`
impl. You can opt out of this with `custom_encodable`. Opting out is the
opposite to how Rust normally works with autogenerated (derived) impls.
This commit inverts the behaviour, replacing `custom_encodable` with
`encodable` which opts into the default `Encodable`/`Decodable` impl.
Only 23 of the 59 `newtype_index!` occurrences need `encodable`.
Even better, there were eight crates with a dependency on
`rustc_serialize` just from unused default `Encodable`/`Decodable`
impls. This commit removes that dependency from those eight crates.
- Sort dependencies and features sections.
- Add `tidy` markers to the sorted sections so they stay sorted.
- Remove empty `[lib`] sections.
- Remove "See more keys..." comments.
Excluded files:
- rustc_codegen_{cranelift,gcc}, because they're external.
- rustc_lexer, because it has external use.
- stable_mir, because it has external use.
Don't store lazyness in `DefKind::TyAlias`
1. Don't store lazyness of a type alias in its `DefKind`, but instead via a query.
2. This allows us to treat type aliases as lazy if `#[feature(lazy_type_alias)]` *OR* if the alias contains a TAIT, rather than having checks for both in separate parts of the codebase.
r? `@oli-obk` cc `@fmease`
Simplify/Optimize FileEncoder
FileEncoder is basically a BufWriter except that it exposes access to the not-written-to-yet region of the buffer so that some users can write directly to the buffer. This strategy is awesome because it lets us avoid calling memcpy for small copies, but the previous strategy was based on the writer accessing a `&mut [MaybeUninit<u8>; N]` and returning a `&[u8]` which is an API which currently mandates the use of unsafe code, making that interface in general not that appealing.
So this PR cleans up the FileEncoder implementation and builds on that general idea of direct buffer access in order to prevent `memcpy` calls in a few key places when encoding the dep graph and rmeta tables. The interface used here is now 100% safe, but with the caveat that internally we need to avoid trusting the number of bytes that the provided function claims to have written.
The original primary objective of this PR was to clean up the FileEncoder implementation so that the fix for the following issues would be easy to implement. The fix for these issues is to correctly update self.buffered even when writes fail, which I think it's easy to verify manually is now done, because all the FileEncoder methods are small.
Fixes https://github.com/rust-lang/rust/issues/115298
Fixes https://github.com/rust-lang/rust/issues/114671
Fixes https://github.com/rust-lang/rust/issues/114045
Fixes https://github.com/rust-lang/rust/issues/108100
Fixes https://github.com/rust-lang/rust/issues/106787
Add optimized lock methods for `Sharded` and refactor `Lock`
This adds methods to `Sharded` which pick a shard and also locks it. These branch on parallelism just once instead of twice, improving performance.
Benchmark for `cfg(parallel_compiler)` and 1 thread:
<table><tr><td rowspan="2">Benchmark</td><td colspan="1"><b>Before</b></th><td colspan="2"><b>After</b></th></tr><tr><td align="right">Time</td><td align="right">Time</td><td align="right">%</th></tr><tr><td>🟣 <b>clap</b>:check</td><td align="right">1.6461s</td><td align="right">1.6345s</td><td align="right"> -0.70%</td></tr><tr><td>🟣 <b>hyper</b>:check</td><td align="right">0.2414s</td><td align="right">0.2394s</td><td align="right"> -0.83%</td></tr><tr><td>🟣 <b>regex</b>:check</td><td align="right">0.9205s</td><td align="right">0.9143s</td><td align="right"> -0.67%</td></tr><tr><td>🟣 <b>syn</b>:check</td><td align="right">1.4981s</td><td align="right">1.4869s</td><td align="right"> -0.75%</td></tr><tr><td>🟣 <b>syntex_syntax</b>:check</td><td align="right">5.7629s</td><td align="right">5.7256s</td><td align="right"> -0.65%</td></tr><tr><td>Total</td><td align="right">10.0690s</td><td align="right">10.0008s</td><td align="right"> -0.68%</td></tr><tr><td>Summary</td><td align="right">1.0000s</td><td align="right">0.9928s</td><td align="right"> -0.72%</td></tr></table>
cc `@SparrowLii`
Use a specialized varint + bitpacking scheme for DepGraph encoding
The previous scheme here uses leb128 to encode the edge tables that represent the incr comp dependency graph. The problem with that scheme is that leb128 has overhead for larger values, and generally relies on the distribution of encoded values being heavily skewed towards smaller values. That is definitely not the case for a dep node index, since they are handed out sequentially and the whole range is covered, the distribution is actually biased in the opposite direction: Most dep nodes are large.
This PR implements a different varint encoding scheme. Instead of applying varint encoding to individual dep node indices (which is extremely branchy) we now apply it per node.
While being built, each node now stores its edges in a `SmallVec` with a bit of extra logic to track the max value of each edge. Then we varint encode the whole batch. This is a gamble: We save on space by only claiming 2 bits per node instead of ~3 bits per edge which is a nice savings but needs to balance out with the space overhead that a single large index in a node with a lot of edges will encode unnecessary bytes in each of that node's edge indices.
Then, to keep the runtime overhead of this encoding scheme down we deserialize our indices by loading 4 bytes for each then masking off the bytes that are't ours. This is much less code and branches than leb128, but relies on having some readable bytes past the end of each edge list. We explicitly add such padding to the in-memory data during decoding. And we also do this decoding lazily, turning a dense on-disk encoding into a peak memory reduction.
Then we apply a bit-packing scheme; since in https://github.com/rust-lang/rust/pull/115391 we now have unused bits on `DepKind`, we use those unused bits (currently there are 7!) to store the 2 bits that we need for the byte width of the edges in each node, then use the remaining bits to store the length of the edge list, if it fits.
r? `@nnethercote`
Remove conditional use of `Sharded` from query state
`Sharded` is already a zero cost abstraction, so it shouldn't affect the performance of the single thread compiler if LLVM does its job.
r? `@cjgillot`