Fix deduplication mismatches in vtables leading to upcasting unsoundness
We currently have two cases where subtleties in supertraits can trigger disagreements in the vtable layout, e.g. leading to a different vtable layout being accessed at a callsite compared to what was prepared during unsizing. Namely:
### #135315
In this example, we were not normalizing supertraits when preparing vtables. In the example,
```
trait Supertrait<T> {
fn _print_numbers(&self, mem: &[usize; 100]) {
println!("{mem:?}");
}
}
impl<T> Supertrait<T> for () {}
trait Identity {
type Selff;
}
impl<Selff> Identity for Selff {
type Selff = Selff;
}
trait Middle<T>: Supertrait<()> + Supertrait<T> {
fn say_hello(&self, _: &usize) {
println!("Hello!");
}
}
impl<T> Middle<T> for () {}
trait Trait: Middle<<() as Identity>::Selff> {}
impl Trait for () {}
fn main() {
(&() as &dyn Trait as &dyn Middle<()>).say_hello(&0);
}
```
When we prepare `dyn Trait`, we see a supertrait of `Middle<<() as Identity>::Selff>`, which itself has two supertraits `Supertrait<()>` and `Supertrait<<() as Identity>::Selff>`. These two supertraits are identical, but they are not duplicated because we were using structural equality and *not* considering normalization. This leads to a vtable layout with two trait pointers.
When we upcast to `dyn Middle<()>`, those two supertraits are now the same, leading to a vtable layout with only one trait pointer. This leads to an offset error, and we call the wrong method.
### #135316
This one is a bit more interesting, and is the bulk of the changes in this PR. It's a bit similar, except it uses binder equality instead of normalization to make the compiler get confused about two vtable layouts. In the example,
```
trait Supertrait<T> {
fn _print_numbers(&self, mem: &[usize; 100]) {
println!("{mem:?}");
}
}
impl<T> Supertrait<T> for () {}
trait Trait<T, U>: Supertrait<T> + Supertrait<U> {
fn say_hello(&self, _: &usize) {
println!("Hello!");
}
}
impl<T, U> Trait<T, U> for () {}
fn main() {
(&() as &'static dyn for<'a> Trait<&'static (), &'a ()>
as &'static dyn Trait<&'static (), &'static ()>)
.say_hello(&0);
}
```
When we prepare the vtable for `dyn for<'a> Trait<&'static (), &'a ()>`, we currently consider the PolyTraitRef of the vtable as the key for a supertrait. This leads two two supertraits -- `Supertrait<&'static ()>` and `for<'a> Supertrait<&'a ()>`.
However, we can upcast[^up] without offsetting the vtable from `dyn for<'a> Trait<&'static (), &'a ()>` to `dyn Trait<&'static (), &'static ()>`. This is just instantiating the principal trait ref for a specific `'a = 'static`. However, when considering those supertraits, we now have only one distinct supertrait -- `Supertrait<&'static ()>` (which is deduplicated since there are two supertraits with the same substitutions). This leads to similar offsetting issues, leading to the wrong method being called.
[^up]: I say upcast but this is a cast that is allowed on stable, since it's not changing the vtable at all, just instantiating the binder of the principal trait ref for some lifetime.
The solution here is to recognize that a vtable isn't really meaningfully higher ranked, and to just treat a vtable as corresponding to a `TraitRef` so we can do this deduplication more faithfully. That is to say, the vtable for `dyn for<'a> Tr<'a>` and `dyn Tr<'x>` are always identical, since they both would correspond to a set of free regions on an impl... Do note that `Tr<for<'a> fn(&'a ())>` and `Tr<fn(&'static ())>` are still distinct.
----
There's a bit more that can be cleaned up. In codegen, we can stop using `PolyExistentialTraitRef` basically everywhere. We can also fix SMIR to stop storing `PolyExistentialTraitRef` in its vtable allocations.
As for testing, it's difficult to actually turn this into something that can be tested with `rustc_dump_vtable`, since having multiple supertraits that are identical is a recipe for ambiguity errors. Maybe someone else is more creative with getting that attr to work, since the tests I added being run-pass tests is a bit unsatisfying. Miri also doesn't help here, since it doesn't really generate vtables that are offset by an index in the same way as codegen.
r? `@lcnr` for the vibe check? Or reassign, idk. Maybe let's talk about whether this makes sense.
<sup>(I guess an alternative would also be to not do any deduplication of vtable supertraits (or only a really conservative subset) rather than trying to normalize and deduplicate more faithfully here. Not sure if that works and is sufficient tho.)</sup>
cc `@steffahn` -- ty for the minimizations
cc `@WaffleLapkin` -- since you're overseeing the feature stabilization :3
Fixes#135315Fixes#135316
Cast global variables to default address space
Pointers for variables all need to be in the same address space for correct compilation. Therefore ensure that even if a global variable is created in a different address space, it is casted to the default address space before its value is used.
This is necessary for the amdgpu target and others where the default address space for global variables is not 0.
For example `core` does not compile in debug mode when not casting the address space to the default one because it tries to emit the following (simplified) LLVM IR, containing a type mismatch:
```llvm
`@alloc_0` = addrspace(1) constant <{ [6 x i8] }> <{ [6 x i8] c"bit.rs" }>, align 1
`@alloc_1` = addrspace(1) constant <{ ptr }> <{ ptr addrspace(1) `@alloc_0` }>, align 8
; ^ here a struct containing a `ptr` is needed, but it is created using a `ptr addrspace(1)`
```
For this to compile, we need to insert a constant `addrspacecast` before we use a global variable:
```llvm
`@alloc_0` = addrspace(1) constant <{ [6 x i8] }> <{ [6 x i8] c"bit.rs" }>, align 1
`@alloc_1` = addrspace(1) constant <{ ptr }> <{ ptr addrspacecast (ptr addrspace(1) `@alloc_0` to ptr) }>, align 8
```
As vtables are global variables as well, they are also created with an `addrspacecast`. In the SSA backend, after a vtable global is created, metadata is added to it. To add metadata, we need the non-casted global variable. Therefore we strip away an addrspacecast if there is one, to get the underlying global.
Tracking issue: #135024
Pointers for variables all need to be in the same address space for
correct compilation. Therefore ensure that even if a global variable is
created in a different address space, it is casted to the default
address space before its value is used.
This is necessary for the amdgpu target and others where the default
address space for global variables is not 0.
For example `core` does not compile in debug mode when not casting the
address space to the default one because it tries to emit the following
(simplified) LLVM IR, containing a type mismatch:
```llvm
@alloc_0 = addrspace(1) constant <{ [6 x i8] }> <{ [6 x i8] c"bit.rs" }>, align 1
@alloc_1 = addrspace(1) constant <{ ptr }> <{ ptr addrspace(1) @alloc_0 }>, align 8
; ^ here a struct containing a `ptr` is needed, but it is created using a `ptr addrspace(1)`
```
For this to compile, we need to insert a constant `addrspacecast` before
we use a global variable:
```llvm
@alloc_0 = addrspace(1) constant <{ [6 x i8] }> <{ [6 x i8] c"bit.rs" }>, align 1
@alloc_1 = addrspace(1) constant <{ ptr }> <{ ptr addrspacecast (ptr addrspace(1) @alloc_0 to ptr) }>, align 8
```
As vtables are global variables as well, they are also created with an
`addrspacecast`. In the SSA backend, after a vtable global is created,
metadata is added to it. To add metadata, we need the non-casted global
variable. Therefore we strip away an addrspacecast if there is one, to
get the underlying global.
`rustc_span::symbol` defines some things that are re-exported from
`rustc_span`, such as `Symbol` and `sym`. But it doesn't re-export some
closely related things such as `Ident` and `kw`. So you can do `use
rustc_span::{Symbol, sym}` but you have to do `use
rustc_span::symbol::{Ident, kw}`, which is inconsistent for no good
reason.
This commit re-exports `Ident`, `kw`, and `MacroRulesNormalizedIdent`,
and changes many `rustc_span::symbol::` qualifiers in `compiler/` to
`rustc_span::`. This is a 200+ net line of code reduction, mostly
because many files with two `use rustc_span` items can be reduced to
one.
the behavior of the type system not only depends on the current
assumptions, but also the currentnphase of the compiler. This is
mostly necessary as we need to decide whether and how to reveal
opaque types. We track this via the `TypingMode`.
llvm: replace some deprecated functions
`LLVMMDStringInContext` and `LLVMMDNodeInContext` are deprecated, replace them with `LLVMMDStringInContext2` and `LLVMMDNodeInContext2`.
Also replace `Value` with `Metadata` in some function signatures for better consistency.
Add `#[warn(unreachable_pub)]` to a bunch of compiler crates
By default `unreachable_pub` identifies things that need not be `pub` and tells you to make them `pub(crate)`. But sometimes those things don't need any kind of visibility. So they way I did these was to remove the visibility entirely for each thing the lint identifies, and then add `pub(crate)` back in everywhere the compiler said it was necessary. (Or occasionally `pub(super)` when context suggested that was appropriate.) Tedious, but results in more `pub` removal.
There are plenty more crates to do but this seems like enough for a first PR.
r? `@compiler-errors`
By splitting the `FnSig` within `TyKind::FnPtr` into `FnSigTys` and
`FnHeader`, which can be packed more efficiently. This reduces the size
of the hot `TyKind` type from 32 bytes to 24 bytes on 64-bit platforms.
This reduces peak memory usage by a few percent on some benchmarks. It
also reduces cache misses and page faults similarly, though this doesn't
translate to clear cycles or wall-time improvements on CI.
Add Natvis visualiser and debuginfo tests for `f16`
To render `f16`s in debuggers on MSVC targets, this PR changes the compiler to output `f16`s as `struct f16 { bits: u16 }`, and includes a Natvis visualiser that manually converts the `f16`'s bits to a `float` which is can then be displayed by debuggers. `gdb`, `lldb` and `cdb` tests are also included for `f16` .
`f16`/`f128` MSVC debug info issue: #121837
Tracking issue: #116909