This allows coverage information to be attached to the function as a whole when
appropriate, instead of being smuggled through coverage statements in the
function's basic blocks.
As an example, this patch moves the `function_source_hash` value out of
individual `CoverageKind::Counter` statements and into the per-function info.
When synthesizing unused functions for coverage purposes, the absence of this
info is taken to indicate that a function was not eligible for coverage and
should not be synthesized.
The LLVM API that we use to encode coverage mappings already has its own code
for removing unused coverage expressions and renumbering the rest.
This lets us get rid of our own complex renumbering code, making it easier to
change our coverage code in other ways.
After coverage instrumentation and MIR transformations, we can sometimes end up
with coverage expressions that always have a value of zero. Any expression
operand that refers to an always-zero expression can be replaced with a literal
`Operand::Zero`, making the emitted coverage mapping data smaller and simpler.
This simplification step is mostly redundant with the simplifications performed
inline in `expressions_with_regions`, except that it does a slightly more
thorough job in some cases (because it checks for always-zero expressions
*after* other simplifications).
However, adding this simplification step will then let us greatly simplify that
code, without affecting the quality of the emitted coverage maps.
Rework `no_coverage` to `coverage(off)`
As discussed at the tail of https://github.com/rust-lang/rust/issues/84605 this replaces the `no_coverage` attribute with a `coverage` attribute that takes sub-parameters (currently `off` and `on`) to control the coverage instrumentation.
Allows future-proofing for things like `coverage(off, reason="Tested live", issue="#12345")` or similar.
Instead of writing coverage mappings into a supplied `&RustString`, this
function can just create the buffer itself and return the resulting vector of
bytes.
If two or more mappings cover exactly the same region, their relative order
will now be preserved from `get_expressions_and_counter_regions`, rather than
being disturbed by implementation details of an unstable sort.
The current order is: counter mappings, expression mappings, zero mappings.
(LLVM will also perform its own stable sort on these mappings, but that sort
only compares file ID, start location, and `RegionKind`.)
This struct was only being used to hold the global file table, and one of its
methods didn't even use the table. Changing its methods to ordinary functions
makes it easier to see where the table is mutated.
Coverage FFI types were historically split across two modules, because some of
them were needed by code in `rustc_codegen_ssa`.
Now that all of the coverage codegen code has been moved into
`rustc_codegen_llvm` (#113355), it's possible to move all of the FFI types into
a single module, making it easier to see all of them at once.
Operand types are now tracked explicitly, so there is no need to reserve ID 0
for the special always-zero counter.
As part of the renumbering, this change fixes an off-by-one error in the way
counters were counted by the `coverageinfo` query. As a result, functions
should now have exactly the number of counters they actually need, instead of
always having an extra counter that is never used.
Operand types are now tracked explicitly, so there is no need for expression
IDs to avoid counter IDs by descending from `u32::MAX`. Instead they can just
count up from 0, and can be used directly as indices when necessary.
Because the three kinds of operand are now distinguished explicitly, we no
longer need fiddly code to disambiguate counter IDs and expression IDs based on
the total number of counters/expressions in a function.
This does increase the size of operands from 4 bytes to 8 bytes, but that
shouldn't be a big deal since they are mostly stored inside boxed structures,
and the current coverage code is not particularly size-optimized anyway.
This section name is always constant for a given target, but obtaining it from
LLVM requires a few intermediate allocations. There's no need to do so
repeatedly from inside a per-function loop.
Remove `LLVMRustCoverageHashCString`
Coverage has two FFI functions for computing the hash of a byte string. One takes a ptr/len pair (`LLVMRustCoverageHashByteArray`), and the other takes a NUL-terminated C string (`LLVMRustCoverageHashCString`).
But on closer inspection, the C string version is unnecessary. The calling-side code converts a Rust `&str` into a `CString`, and the C++ code then immediately turns it back into a ptr/len string before actually hashing it. So we can just call the ptr/len version directly instead.
---
This PR also fixes a bug in the C++ declaration of `LLVMRustCoverageHashByteArray`. It should be `size_t`, since that's what is declared and passed on the Rust side, and it's what `StrRef`'s constructor expects to receive on the callee side.
Coverage has two FFI functions for computing the hash of a byte string. One
takes a ptr/len pair, and the other takes a NUL-terminated C string.
But on closer inspection, the C string version is unnecessary. The calling-side
code converts a Rust `&str` into a C string, and the C++ code then immediately
turns it back into a ptr/len string before actually hashing it.
The function body immediately treats it as a slice anyway, so this just makes
it possible to call the hash function with arbitrary read-only byte slices.
Stabilize `-Z instrument-coverage` as `-C instrument-coverage`
(Tracking issue for `instrument-coverage`: https://github.com/rust-lang/rust/issues/79121)
This PR stabilizes support for instrumentation-based code coverage, previously provided via the `-Z instrument-coverage` option. (Continue supporting `-Z instrument-coverage` for compatibility for now, but show a deprecation warning for it.)
Many, many people have tested this support, and there are numerous reports of it working as expected.
Move the documentation from the unstable book to stable rustc documentation. Update uses and documentation to use the `-C` option.
Addressing questions raised in the tracking issue:
> If/when stabilized, will the compiler flag be updated to -C instrument-coverage? (If so, the -Z variant could also be supported for some time, to ease migrations for existing users and scripts.)
This stabilization PR updates the option to `-C` and keeps the `-Z` variant to ease migration.
> The Rust coverage implementation depends on (and automatically turns on) -Z symbol-mangling-version=v0. Will stabilizing this feature depend on stabilizing v0 symbol-mangling first? If so, what is the current status and timeline?
This stabilization PR depends on https://github.com/rust-lang/rust/pull/90128 , which stabilizes `-C symbol-mangling-version=v0` (but does not change the default symbol-mangling-version).
> The Rust coverage implementation implements the latest version of LLVM's Coverage Mapping Format (version 4), which forces a dependency on LLVM 11 or later. A compiler error is generated if attempting to compile with coverage, and using an older version of LLVM.
Given that LLVM 13 has now been released, requiring LLVM 11 for coverage support seems like a reasonable requirement. If people don't have at least LLVM 11, nothing else breaks; they just can't use coverage support. Given that coverage support currently requires a nightly compiler and LLVM 11 or newer, allowing it on a stable compiler built with LLVM 11 or newer seems like an improvement.
The [tracking issue](https://github.com/rust-lang/rust/issues/79121) and the [issue label A-code-coverage](https://github.com/rust-lang/rust/labels/A-code-coverage) link to a few open issues related to `instrument-coverage`, but none of them seem like showstoppers. All of them seem like improvements and refinements we can make after stabilization.
The original `-Z instrument-coverage` support went through a compiler-team MCP at https://github.com/rust-lang/compiler-team/issues/278 . Based on that, `@pnkfelix` suggested that this needed a stabilization PR and a compiler-team FCP.
If we do not add code coverage instrumentation to the `Body` of a
function, then when we go to generate the function record for it, we
won't write any data and this later causes llvm-cov to fail when
processing data for the entire coverage report.
I've identified two main cases where we do not currently add code
coverage instrumentation to the `Body` of a function:
1. If the function has a single `BasicBlock` and it ends with a
`TerminatorKind::Unreachable`.
2. If the function is created using a proc macro of some kind.
For case 1, this typically not important as this most often occurs as
the result of function definitions that take or return uninhabited
types. These kinds of functions, by definition, cannot even be called so
they logically should not be counted in code coverage statistics.
For case 2, I haven't looked into this very much but I've noticed while
testing this patch that (other than functions which are covered by case
1) the skipped function coverage debug message is occasionally triggered
in large crate graphs by functions generated from a proc macro. This may
have something to do with weird spans being generated by the proc macro
but this is just a guess.
I think it's reasonable to land this change since currently, we fail to
generate *any* results from llvm-cov when a function has no coverage
instrumentation applied to it. With this change, we get coverage data
for all functions other than the two cases discussed above.
Continue supporting -Z instrument-coverage for compatibility for now,
but show a deprecation warning for it.
Update uses and documentation to use the -C option.
Move the documentation from the unstable book to stable rustc
documentation.
The issue here is that the logic used to determine which CGU to put the
dead function stubs in doesn't handle cases where a module is never
assigned to a CGU.
The partitioning logic also caused issues in #85461 where inline
functions were duplicated into multiple CGUs resulting in duplicate
symbols.
This commit fixes the issue by removing the complex logic used to assign
dead code stubs to CGUs and replaces it with a much simplier model: we
pick one CGU to hold all the dead code stubs. We pick a CGU which has
exported items which increases the likelihood the linker won't throw
away our dead functions and we pick the smallest to minimize the impact
on compilation times for crates with very large CGUs.
Fixes#86177Fixes#85718Fixes#79622