detects redundant imports that can be eliminated.
for #117772 :
In order to facilitate review and modification, split the checking code and
removing redundant imports code into two PR.
Elaborate on ip_addr bit conversion endianness
Adds explanation of how endianness is handled when converting `Ipv4Addr` and `Ipv6Addr` to and from bits. This is intended to unblock stabilization of the affected methods.
Addresses #113744
Use OnceCell in cell module documentation
The spanning tree example in the std cell module implementation was created before `OnceCell` was added to Rust so it uses `RefCell`. However, in this case using `OnceCell` seems more appropriate and produces simpler code. As a bonus, this also means that all three cell types are presented in the examples of std cell module.
Add support for making lib features internal
We have the notion of an "internal" lang feature: a feature that is never intended to be stabilized, and using which can cause ICEs and other issues without that being considered a bug.
This extends that idea to lib features as well. It is an alternative to https://github.com/rust-lang/rust/pull/115623: instead of using an attribute to declare lib features internal, we simply do this based on the name. Everything ending in `_internals` or `_internal` is considered internal.
Then we rename `core_intrinsics` to `core_intrinsics_internal`, which fixes https://github.com/rust-lang/rust/issues/115597.
Make the following API stable:
// in core::any
pub fn type_name_of_val<T: ?Sized>(_val: &T) -> &'static str
Const stability is not added because this relies on `type_name` which is also
not const. That has a blocking issue.
Fixes#66359
move exposed-provenance APIs into separate feature gate
We have already stated explicitly for all the 'exposed' functions that
> Using this method means that code is *not* following strict provenance rules.
However, they were part of the same feature gate and still described as part of the strict provenance experiment. Unfortunately, their semantics are much less clear and certainly nowhere near stabilization, so in preparation for an attempt to stabilize the strict provenance APIs, I suggest we split the things related to "exposed" into their own feature gate. I also used this opportunity to better explain how Exposed Provenance fits into the larger plan here: this is *one possible candidate* for `as` semantics, but we don't know if it is actually viable, so we can't really promise that it is equivalent to `as`. If it works out we probably want to make `as` equivalent to the 'exposed' APIs; if it doesn't, we will remove them again and try to find some other semantics for `as`.
Use `usize::repeat_u8` instead of implementing `repeat_byte` in `memchr.rs`
It's simpler that way and the tricks don't actually make a difference: https://godbolt.org/z/zrvYY1dGx
remove the memcpy-on-equal-ptrs assumption
One of the libc we support, musl, [defines `memcpy` with `restrict` pointers](https://git.musl-libc.org/cgit/musl/tree/src/string/memcpy.c#n5). This in fact matches the definition in the C standard. Calling that `memcpy` with overlapping pointers is clearly UB, who knows what the compiler did when optimizing this `memcpy` -- it certainly assumed source and destination to be disjoint.
Lucky enough, it does not seem like we actually need this assumption that `memcpy(p, p, n)` is always allowed. clang and GCC need it since they use `memcpy` to compile C assignments, but [we use memmove for similar code](https://godbolt.org/z/bcW85WYcM). There are no known cases where LLVM introduces calls to memcpy on equal pointers itself. (And if there were, that would be a soundness bug in rustc due to the musl issue mentioned above.)
This does mean we must make sure to never call the LLVM `memcpy` builtin on equal ranges even though the LangRef says that is allowed. Currently that is the case so we just need to make sure it remains the case. :) Cc `@rust-lang/opsem` `@rust-lang/wg-llvm`
Expand in-place iteration specialization to Flatten, FlatMap and ArrayChunks
This enables the following cases to collect in-place:
```rust
let v = vec![[0u8; 4]; 1024]
let v: Vec<_> = v.into_iter().flatten().collect();
let v: Vec<Option<NonZeroUsize>> = vec![NonZeroUsize::new(0); 1024];
let v: Vec<_> = v.into_iter().flatten().collect();
let v = vec![u8; 4096];
let v: Vec<_> = v.into_iter().array_chunks::<4>().collect();
```
Especially the nicheful-option-flattening should be useful in real code.
Fix comments for unsigned non-zero `checked_add`, `saturating_add`
While looking at #118313, I happened to notice that two of the expanded comments appear to be slightly inaccurate.
For these two methods, `other` is an ordinary unsigned integer, so it can be zero.
Since the sum of non-zero and zero is always non-zero, the safety argument holds even when `other` is zero.
Update mod comment
The comment of `ASCII_CASE_MASK` on line 477 is `If 6th bit is set ascii is lower case.` but the original comment of `*self ^ ((self.is_ascii_lowercase() as u8) * ASCII_CASE_MASK)` was `Toggle the fifth bit if this is a lowercase letter`
For these two methods, `other` is an ordinary unsigned integer, so it can be zero.
Since the sum of non-zero and zero is always non-zero, the safety argument
holds even when `other` is zero.
rustdoc: Remove space from fake-variadic fn ptr impls
before: `for fn (T₁, T₂, …, Tₙ) -> Ret`
after: `for fn(T₁, T₂, …, Tₙ) -> Ret`
I don't think we usually have spaces there, so it looks weird.
cc `@notriddle` since you added the space in https://github.com/rust-lang/rust/pull/98180 (or rather, added the feature with a space included).
Add `debug_assert_nounwind` and convert `assert_unsafe_precondition`
`assert_unsafe_precondition` checks non-CTFE-evaluable conditions in runtime and performs no-op in compile time, while many of its current usage can be checked during const eval.
Fixes error count display is different when there's only one error left
Supersedes #114759
### What did I do?
I did the small change in `rustc_errors` by hand. Then I did the other changes in `/compiler` by hand, those were just find replace on `*.rs` in the workspace. The changes in run-make are find replace for `run-make` in the workspace.
All other changes are blessed using `x test TEST --bless`. I blessed the tests that were blessed in #114759.
### how to review this nightmare
ping bors with an `r+`. You should check that my logic is sound and maybe quickly scroll through the diff, but fully verifying it seems fairly hard to impossible. I did my best to do this correctly.
Thank you `@adrianEffe` for bringing this up and your initial implementation.
cc `@flip1995,` you said you want to do a subtree sync asap
cc `@RalfJung` maybe you want to do a quick subtree sync afterwards as well for Miri
r? `@WaffleLapkin`
Indicate that multiplication in Layout::array cannot overflow
Since https://github.com/rust-lang/rust/pull/113113, we have added a check that skips calling into the allocator at all if `capacity == 0`. The global, default allocator will not actually try to allocate though; it returns a dangling pointer explicitly. However, these two checks are not merged/deduplicated by LLVM and so we're comparing to zero twice whenever vectors are allocated/grown. Probably cheap, but also potentially expensive in code size and seems like an unfortunate miss.
This removes that extra check by telling LLVM that the multiplication as part of Layout::array can't overflow, turning the original non-zero value into a zero value afterwards. In my checks locally this successfully drops the duplicate comparisons.
See https://rust.godbolt.org/z/b6nPP9dcK for a code example.
```rust
pub fn foo(elements: usize) -> Vec<u32> {
Vec::with_capacity(elements)
}
```
r? `@scottmcm` since you touched this in a32305a80f - curious if you have thoughts on doing this / can confirm my model of this being correct.
This allows LLVM to optimize comparisons to zero before & after the
multiplication into one, saving on code size and eliminating an (always
true) branch from most Vec allocations.
Remove option_payload_ptr; redundant to offset_of
The `option_payload_ptr` intrinsic is no longer required as `offset_of` supports traversing enums (#114208). This PR removes it in order to dogfood offset_of (as suggested at https://github.com/rust-lang/rust/issues/106655#issuecomment-1790907626). However, it will not build until those changes reach beta (which I think is within the next 8 days?) so I've opened it as a draft.
Expose tests for {f32,f64}.total_cmp in docs
Expose tests for {f32,f64}.total_cmp in docs
Uncomment the helpful `assert_eq!` line, which is stripped out completely in docs, and leaves the reader to mentally play through the algorithm, or go to the playground and add a println!, to see what the result will be.
(If these tests are known to fail on some platforms, is there some mechanism to conditionalize this or escape the test so the `assert_eq!` source will be visible on the web? I am a newbie, which is why I was reading docs ;)
impl more traits for ptr::Alignment, add mask method
Changes:
* Adds `rustc_const_unstable` attributes where missing
* Makes `log2` method const
* Adds `mask` method
* Implements `Default`, which is equivalent to `Alignment::MIN`
No longer included in PR:
* Removes indirection of `AlignmentEnum` type alias (this was intentional)
* Implements `Display`, `Binary`, `Octal`, `LowerHex`, and `UpperHex` (should go through libs-api instead)
* Controversially implements `LowerExp` and `UpperExp` using `p` instead of `e` to indicate a power of 2 (also should go through libs-api)
Tracking issue for `ptr::Alignment`: #102070
Reenable effects in libcore
With #116670, #117531, and #117171, I think we would be comfortable with re-enabling the effects feature for more testing in libcore.
r? `@oli-obk`
cc `@fmease`
cc #110395
Remove asmjs
Fulfills [MCP 668](https://github.com/rust-lang/compiler-team/issues/668).
`asmjs-unknown-emscripten` does not work as-specified, and lacks essential upstream support for generating asm.js, so it should not exist at all.
feat: implement `DoubleEndedSearcher` for `CharArray[Ref]Searcher`
This PR implements `DoubleEndedSearcher` for both `CharArraySearcher` and `CharArrayRefSearcher`. I'm not sure whether this was just overlooked or if there is a reason for it, but since it behaves exactly like `CharSliceSearcher`, I think the implementations should be appropriate.
document ABI compatibility
I don't think we have any central place where we document our ABI compatibility rules, so let's create one. The `fn()` pointer type seems like a good place since ABI questions can only become relevant when invoking a function through a function pointer.
This will likely need T-lang FCP.
avoid exhaustive i16 test in Miri
https://github.com/rust-lang/rust/pull/116301 added a test that is way too slow to be running in Miri. So let's only test a few hopefully representative cases.
Custom MIR: Support cleanup blocks
Cleanup blocks are declared with `bb (cleanup) = { ... }`.
`Call` and `Drop` terminators take an additional argument describing the unwind action, which is one of the following:
* `UnwindContinue()`
* `UnwindUnreachable()`
* `UnwindTerminate(reason)`, where reason is `ReasonAbi` or `ReasonInCleanup`
* `UnwindCleanup(block)`
Also support unwind resume and unwind terminate terminators:
* `UnwindResume()`
* `UnwindTerminate(reason)`
Cleanup blocks are declared with `bb (cleanup) = { ... }`.
`Call` and `Drop` terminators take an additional argument describing the
unwind action, which is one of the following:
* `UnwindContinue()`
* `UnwindUnreachable()`
* `UnwindTerminate(reason)`, where reason is `ReasonAbi` or `ReasonInCleanup`
* `UnwindCleanup(block)`
Also support unwind resume and unwind terminate terminators:
* `UnwindResume()`
* `UnwindTerminate(reason)`