Add new unstable feature `const_eq_ignore_ascii_case`
Tracking issue - #131719
Mark `[u8]`, `str` `eq_ignore_ascii_case` functions const
---
The codegen for this implementation matches the existing `iter::zip` implementation better than incrementing with a counter
while loop with counter - https://rust.godbolt.org/z/h9cs5zajc
while let - https://rust.godbolt.org/z/ecMeMjjEb
make char::is_whitespace unstably const
I am adding this to the existing https://github.com/rust-lang/rust/issues/132241 feature gate, since `is_digit` and `is_whitespace` seem similar enough that one can group them together.
Rollup of 8 pull requests
Successful merges:
- #132259 (rustc_codegen_llvm: Add a new 'pc' option to branch-protection)
- #132409 (CI: switch 7 linux jobs to free runners)
- #132498 (Suggest fixing typos and let bindings at the same time)
- #132524 (chore(style): sync submodule exclusion list between tidy and rustfmt)
- #132567 (Properly suggest `E::assoc` when we encounter `E::Variant::assoc`)
- #132571 (add const_eval_select macro to reduce redundancy)
- #132637 (Do not filter empty lint passes & re-do CTFE pass)
- #132642 (Add documentation on `ast::Attribute`)
r? `@ghost`
`@rustbot` modify labels: rollup
add const_eval_select macro to reduce redundancy
I played around a bit with a macro to make const_eval_select invocations look a bit nicer and avoid repeating the argument lists. Here's what I got. What do you think?
I didn't apply this everywhere yet because I wanted to gather feedback first.
The second commit moves the macros from https://github.com/rust-lang/rust/pull/132542 into a more sensible place. It didn't seem worth its own PR and would conflict with this PR if done separately.
Cc ``@oli-obk`` ``@saethlin`` ``@tgross35``
try-job: dist-aarch64-msvc
[core/fmt] Replace checked slice indexing by unchecked to support panic-free code
Fixes#126425
Replace the potentially panicking `[]` indexing with `get_unchecked()` to prevent linking with panic-related code.
Stabilise `const_char_encode_utf16`.
Closes: #130660
This PR stabilises the `const_char_encode_utf16` feature gate (i.e. support for `char::encode_utf16` in constant expressions).
~~Note that the linked tracking issue is as of this writing currently awaiting FCP until 2024-11-02.~~
Improve example of `impl Pattern for &[char]`
The previous version used `['l', 'l']` as pattern, which would suggest that it matches the `ll` of `Hello world` as a whole.
add rustc std workspace crate sources
This adds the sources for the crates listed at https://crates.io/search?q=rustc-std-workspace in this repo. The first commit adds the original sources as downloaded from crates.io (with `Cargo.toml.orig` moved back over `Cargo.toml`), and adds a README explaining what this is about. The 2nd commit updates the sources to make the core and alloc crates re-exports of the "actual" core and alloc crates, as was already the case with `std`, and also adds a `repository` link to the manifest so one can figure out where to find these crates.
I bumped the version for the core and alloc crates in the hope that the new versions can be published on crates.io shortly after this PR lands.
See [Zulip](https://rust-lang.zulipchat.com/#narrow/channel/219381-t-libs/topic/rustc-std-workspace-core.20crate.20is.20empty) for a bit more context.
r? `@Amanieu`
remove const-support for align_offset and is_aligned
As part of the recent discussion to stabilize `ptr.is_null()` in const context, the general vibe was that it's okay for a const function to panic when the same operation would work at runtime (that's just a case of "dynamically detecting that something is not supported as a const operation"), but it is *not* okay for a const function to just return a different result.
Following that, `is_aligned` and `is_aligned_to` have their const status revoked in this PR, since they do return actively wrong results at const time. In the future we can consider having a new intrinsic or so that can check whether a pointer is "guaranteed to be aligned", but the current implementation based on `align_offset` does not have the behavior we want.
In fact `align_offset` itself behaves quite strangely in const, and that support needs a bunch of special hacks. That doesn't seem worth it. Instead, the users that can fall back to a different implementation should just use const_eval_select directly, and everything else should not be made const-callable. So this PR does exactly that, and entirely removes const support for align_offset.
Closes some tracking issues by removing the associated features:
Closes https://github.com/rust-lang/rust/issues/90962
Closes https://github.com/rust-lang/rust/issues/104203
Cc `@rust-lang/wg-const-eval` `@rust-lang/libs-api`
Update `compiler-builtins` and enable f128 tests on all non-buggy platforms
Update compiler_builtins to 0.1.138 and pin it. This updates to a new version of builtins that includes [1], which was
the last blocker to us enabling `f128` tests on all platforms.
With that, we now provide symbols necessary to work with `f128` everywhere. This means that we are no longer restricted to systems that provide `f128` symbols themselves, and can enable tests by default.
There are still a handful of platforms that need to remain disabled because of bugs and some that had to get updated.
Math support is still off by default since those symbols are not yet available.
[1]: https://github.com/rust-lang/compiler-builtins/pull/624
try-job: test-various
try-job: i686-gnu-nopt
With the `compiler-builtins` update to 0.1.137 [1], we now provide
symbols necessary to work with `f128` everywhere. This means that we are
no longer restricted to 64-bit linux, and can enable tests by default.
There are still a handful of platforms that need to remain disabled
because of bugs. This patch additionally disables the following:
1. MIPS [2]
2. 32-bit x86 [3]
Math support is still off by default since those symbols are not yet
available.
[1]: https://github.com/rust-lang/rust/pull/132433
[2]: https://github.com/llvm/llvm-project/issues/96432
[3]: https://github.com/llvm/llvm-project/issues/77401
This updates to a new version of builtins that includes [1], which was
the last blocker to us enabling `f128` tests on all platforms 🎉.
With this update, also change to pinning the version with `=` rather
than using the default carat versioning. This is meant to ensure that
`compiler-builtins` does not get updated as part of the weekly
`Cargo.lock` update, since updates to this crate need to be intentional:
changes to rust-lang/rust and rust-lang/compiler-builtins sometimes need
to be kept in lockstep, unlike most dependencies, and sometimes these
updates can be problematic.
[1]: https://github.com/rust-lang/compiler-builtins/pull/624
Make `std::os::darwin` public
I'm not sure of the reasoning behind them not being public before, but I think they should be, just like `std::os::ios` and `std::os::macos` are public.
Additionally, I've merged their source code, as it was otherwise just a bunch of unnecessary duplication.
Ultimately, I've done this PR to fix `./x build library --target=aarch64-apple-tvos,aarch64-apple-watchos,aarch64-apple-visionos`, as that currently fails because of dead code warnings.
Since you reviewed https://github.com/rust-lang/rust/pull/121419
r? davidtwco
Fixes https://github.com/rust-lang/rust/issues/121640.
`@rustbot` label O-tvos O-watchos O-visionos
Yeet the `effects` feature, move it onto `const_trait_impl`
This PR merges the `effects` feature into the `const_trait_impl` feature. There's really no need to have two feature gates for one feature.
After this PR, if `const_trait_impl` **is** enabled:
* Users can use and define const traits
* `HostEffect` const conditions will be enforced on the HIR
* We re-check the predicates in MIR just to make sure that we don't "leak" anything during MIR lowering
And if `const_trait_impl` **is not** enabled:
* Users cannot use nor define const traits
* `HostEffect` const conditions are not enforced on the HIR
* We will raise a const validation error if we call a function that has any const conditions (i.e. const traits and functions with any `~const` in their where clasues)
This should be the last step for us to be able to enable const traits in the standard library. We still need to re-constify `Drop` and `Destruct` and stuff for const traits to be particularly *useful* for some cases, but this is a good step :D
r? fee1-dead
cc `@rust-lang/project-const-traits`
Operations like is_aligned would return actively wrong results at compile-time,
i.e. calling it on the same pointer at compiletime and runtime could yield
different results. That's no good.
Instead of having hacks to make align_offset kind-of work in const-eval, just
use const_eval_select in the few places where it makes sense, which also ensures
those places are all aware they need to make sure the fallback behavior is
consistent.
This change updates the documentation for `NonZero` integer types to
explicitly reference the underlying integer type each `NonZero` variant
wraps, instead of using a general "integer" term.
better test for const HashMap; remove const_hash leftovers
The existing `const_with_hasher` test is kind of silly since the HashMap it constructs can never contain any elements. So this adjusts the test to construct a usable HashMap, which is a bit non-trivial since the default hash builder cannot be built in `const`. `BuildHasherDefault::new()` helps but is unstable (https://github.com/rust-lang/rust/issues/123197), so we also have a test that does not involve that type.
The second commit removes the last remnants of https://github.com/rust-lang/rust/issues/104061, since they aren't actually useful -- without const traits, you can't do any hashing in `const`.
Cc ``@rust-lang/libs-api`` ``@rust-lang/wg-const-eval``
Closes#104061
Related to https://github.com/rust-lang/rust/issues/102575
Add LowerExp and UpperExp implementations to NonZero
Adds `LowerExp` and `UpperExp` trait implementations to `NonZero`, as discussed in rust-lang/libs-team#458.
I had to modify the macro to mark the new impls with a different rust version. Let me know if this is the right way to do it (first timer here!)
Implement `From<&mut {slice}>` for `Box/Rc/Arc<{slice}>`
ACP: https://github.com/rust-lang/libs-team/issues/424
New API:
```rust
impl<T: Clone> From<&mut [T]> for Box<[T]>
impl From<&mut str> for Box<str>
impl From<&mut CStr> for Box<CStr>
impl From<&mut OsStr> for Box<OsStr>
impl From<&mut Path> for Box<Path>
impl<T: Clone> From<&mut [T]> for Rc<[T]>
impl From<&mut str> for Rc<str>
impl From<&mut CStr> for Rc<CStr>
impl From<&mut OsStr> for Rc<OsStr>
impl From<&mut Path> for Rc<Path>
impl<T: Clone> From<&mut [T]> for Arc<[T]>
impl From<&mut str> for Arc<str>
impl From<&mut CStr> for Arc<CStr>
impl From<&mut OsStr> for Arc<OsStr>
impl From<&mut Path> for Arc<Path>
```
Since they are trait implementations, I think these are insta-stable.
As mentioned in https://github.com/rust-lang/libs-team/issues/424#issuecomment-2299415749, a crater run might be needed.
get rid of a whole bunch of unnecessary rustc_const_unstable attributes
In general, when a `const fn` is still unstable, it doesn't need a `#[rustc_const_unstable]` attribute. The only exception is functions that internally use things that can't be used in stable const fn yet.
So this gets rid of a whole bunch of `#[rustc_const_unstable]` in libcore.
Remove unintended link
Since `#[link_section]` is enclosed in braces, it was being confused with a link during docs compilation.
This caused compilation to fail when running `x dist` since it emitted a warning regarding broken links.
Fix type reference in documents which was being confused with html tags.
Running `x dist` was failing due to it invoking commands with `-D warnings`, which emitted a warning about unclosed html tags.
library: fix some stability annotations
This PR updates some stability attributes to correctly reflect when some items actually got stabilized. Found while testing https://github.com/rust-lang/rust/pull/132481.
### `core::char` / `std::char`
In https://github.com/rust-lang/rust/pull/26192, the `core::char` module got "stabilized" for 1.2.0, but the `core` crate itself was still unstable until 1.6.0.
In https://github.com/rust-lang/rust/pull/49698, the `std::char` module was changed to a re-export of `core::char`, making `std::char` appear as "stable since 1.2.0", even though it was already stable in 1.0.0.
By marking `core::char` as stable since 1.0.0, the docs will show correct versions for both `core::char` (since 1.6.0) and `std::char` (since 1.0.0). This is also consistent with the stabilities of similar re-exported modules like `core::mem`/`std::mem` for example.
### `{core,std}::array` and `{core,std}::array::TryFromSliceError`
In https://github.com/rust-lang/rust/pull/58302, the `core::array::TryFromSliceError` type got stabilized for 1.34.0, together with `TryFrom`. At that point the `core::array` module was still unstable and a `std::array` re-export didn't exist, but `core::array::TryFromSliceError` could still be named due to https://github.com/rust-lang/rust/pull/95956 to existing yet.
Then, `core::array` got stabilized and `std::array` got added, first targeting 1.36.0 in https://github.com/rust-lang/rust/pull/60657, but then getting backported for 1.35.0 in https://github.com/rust-lang/rust/pull/60838.
This means that `core::array` and `std::array` actually got stabilized in 1.35.0 and `core::array::TryFromSliceError` was accessible through the unstable module in 1.34.0 -- mark them as such so that the docs display the correct versions.
feat(byte_sub_ptr): unstably add ptr::byte_sub_ptr
This is an API that naturally should exist as a combination of byte_offset_from and sub_ptr
both existing (they showed up at similar times so this union was never made). Adding these
is a logical (and perhaps final) precondition of stabilizing ptr_sub_ptr (https://github.com/rust-lang/rust/issues/95892).
Original PR by ``@Gankra`` (https://github.com/rust-lang/rust/pull/121919), I am just reviving it. The 2nd commit (with a small docs tweak) is by me.
make const_alloc_layout feature gate only about functions that are already stable
The const_alloc_layout feature gate has two kinds of functions: those that are stable, but not yet const-stable, and those that are fully unstable.
I think we should split that up. So this PR makes const_alloc_layout just about functions that are already stable but waiting for const-stability; all the other functions now have their constness guarded by the gate that also guards their regular stability.
Cc https://github.com/rust-lang/rust/issues/67521
remove some unnecessary rustc_allow_const_fn_unstable
These are either unstable functions that don't need the attribute, or the attribute refers to a feature that is already stable.
Cleanup attributes around unchecked shifts and unchecked negation in const
The underlying intrinsic is marked as "safe to expose on stable", so we shouldn't need any `rustc_allow_const_fn_unstable(unchecked_shifts)` anywhere. However, bootstrap rustc doesn't yet have the new const stability checks, so these changes only apply under `cfg(not(bootstrap))`.
This is an API that naturally should exist as a combination of byte_offset_from and sub_ptr
both existing (they showed up at similar times so this union was never made). Adding these
is a logical (and perhaps final) precondition of stabilizing ptr_sub_ptr (#95892).
Use Hacker's Delight impl in `i64::midpoint` instead of wide `i128` impl
This PR switches `i64::midpoint` and (`isize::midpoint` where `isize == i64`) to using our Hacker's Delight impl instead of wide `i128` implementation.
As LLVM seems to be outperformed by the complexity of signed 128-bits number compared to our Hacker's Delight implementation.[^1]
It doesn't seems like it's an improvement for the other sizes[^2], so we let them with the wide implementation.
[^1]: https://rust.godbolt.org/z/ravE75EYj
[^2]: https://rust.godbolt.org/z/fzr171zKh
r? libs
Rollup of 6 pull requests
Successful merges:
- #131984 (Stabilize if_let_rescope)
- #132151 (Ensure that resume arg outlives region bound for coroutines)
- #132157 (Remove detail from label/note that is already available in other note)
- #132274 (Cleanup op lookup in HIR typeck)
- #132319 (cg_llvm: Clean up FFI calls for setting module flags)
- #132321 (xous: sync: remove `rustc_const_stable` attribute on Condvar and Mutex new())
r? `@ghost`
`@rustbot` modify labels: rollup
xous: sync: remove `rustc_const_stable` attribute on Condvar and Mutex new()
These functions had `#[rustc_const_stable(feature = "const_locks", since = "1.63.0")]` on them because they were originally taken from `no_threads`. with d066dfd these no longer compile. Since other platforms do not have this attribute, remove it. This fixes the build for Xous.
Rc/Arc: don't leak the allocation if drop panics
Currently, when the last `Rc<T>` or `Arc<T>` is dropped and the destructor of `T` panics, the allocation will be leaked. This leak is unnecessary since the data cannot be (safely) accessed again and `Box` already deallocates in this case, so let's do the same for `Rc` and `Arc`, too.
These functions had `#[rustc_const_stable(feature = "const_locks", since
= "1.63.0")]` on them because they were originally taken from
`no_threads`. with d066dfd these no longer compile. Since other
platforms do not have this attribute, remove it. This fixes the build
for Xous.
Signed-off-by: Sean Cross <sean@xobs.io>
Split `boxed.rs` into a few modules
I wanted to add an impl for `Box<_>`, but was quickly discouraged by the 3K file. This splits off a couple bits, making it at least a bit more manageable.
r? ````@workingjubilee```` (I think you are not bothered by refactorings like this?)
Mark `str::is_char_boundary` and `str::split_at*` unstably `const`.
Tracking issues: #131516, #131518
First commit implements `const_is_char_boundary`, second commit implements `const_str_split_at` (which depends on `const_is_char_boundary`)
~~I used `const_eval_select` for `is_char_boundary` since there is a comment about optimizations that would theoretically not happen with the simple `const`-compatible version (since `slice::get` is not `const`ifiable) cc #84751. I have not checked if this code difference is still required for the optimization, so it might not be worth the code complication, but 🤷.~~
This changes `str::split_at_checked` to use a new private helper function `split_at_unchecked` (copied from `split_at_mut_unchecked`) that does pointer stuff instead of `get_unchecked`, since that is not currently `const`ifiable due to using the `SliceIndex` trait.
Lint against getting pointers from immediately dropped temporaries
Fixes#123613
## Changes:
1. New lint: `dangling_pointers_from_temporaries`. Is a generalization of `temporary_cstring_as_ptr` for more types and more ways to get a temporary.
2. `temporary_cstring_as_ptr` is removed and marked as renamed to `dangling_pointers_from_temporaries`.
3. `clippy::temporary_cstring_as_ptr` is marked as renamed to `dangling_pointers_from_temporaries`.
4. Fixed a false positive[^fp] for when the pointer is not actually dangling because of lifetime extension for function/method call arguments.
5. `core::cell::Cell` is now `rustc_diagnostic_item = "Cell"`
## Questions:
- [ ] Instead of manually checking for a list of known methods and diagnostic items, maybe add some sort of annotation to those methods in library and check for the presence of that annotation? https://github.com/rust-lang/rust/pull/128985#issuecomment-2318714312
## Known limitations:
### False negatives[^fn]:
See the comments in `compiler/rustc_lint/src/dangling.rs`
1. Method calls that are not checked for:
- `temporary_unsafe_cell.get()`
- `temporary_sync_unsafe_cell.get()`
2. Ways to get a temporary that are not recognized:
- `owning_temporary.field`
- `owning_temporary[index]`
3. No checks for ref-to-ptr conversions:
- `&raw [mut] temporary`
- `&temporary as *(const|mut) _`
- `ptr::from_ref(&temporary)` and friends
[^fn]: lint **should** be emitted, but **is not**
[^fp]: lint **should not** be emitted, but **is**
Add a new trait `proc_macro::ToTokens`
Tracking issue #130977
This PR adds a new trait `ToTokens`, implemented for types that can be interpolated inside a `quote!` invocation.
```rust
impl ToTokens for TokenTree
impl ToTokens for TokenStream
impl ToTokens for Literal
impl ToTokens for Ident
impl ToTokens for Punct
impl ToTokens for Group
impl<T: ToTokens + ?Sized> ToTokens for &T
impl<T: ToTokens + ?Sized> ToTokens for &mut T
impl<T: ToTokens + ?Sized> ToTokens for Box<T>
impl<T: ToTokens + ?Sized> ToTokens for Rc<T>
impl<T: ToTokens + ToOwned + ?Sized> ToTokens for Cow<'_, T>
impl<T: ToTokens> ToTokens for Option<T>
impl ToTokens for u{8,16,32,64,128}
impl ToTokens for i{8,16,32,64,128}
impl ToTokens for f{32,64}
impl ToTokens for {u,i}size
impl ToTokens for bool
impl ToTokens for char
impl ToTokens for str
impl ToTokens for String
impl ToTokens for CStr
impl ToTokens for CString
```
~This PR also implements the migration mentioned in the tracking issue, replacing `Extend<Token{Tree,Stream}>` with `Extend<T: ToTokens>`, and replacing `FromIterator<Token{Tree,Stream}>` with `FromIterator<T: ToTokens>`.~
**UPDATE**: Reverted.
```diff
-impl FromIterator<TokenTree> for TokenStream
-impl FromIterator<TokenStream> for TokenStream
+impl<T: ToTokens> FromIterator<T> for TokenStream
-impl Extend<TokenTree> for TokenStream
-impl Extend<TokenStream> for TokenStream
+impl<T: ToTokens> Extend<T> for TokenStream
```
I'm going to leave some comments in the review where I'm unsure and concerned.
r? ``@dtolnay``
CC ``@tgross35``
Make clearer that guarantees in ABI compatibility are for Rust only
cc https://github.com/rust-lang/rust/pull/132136#issuecomment-2439737631 -- it looks like we already had a note that I missed in my initial look here, but this goes further to emphasize the guarantees, including uplifting it to the top of the general documentation.
r? `@RalfJung`
As LLVM seems to be outperformed by the complexity of signed 128-bits
number compared to our Hacker's Delight implementation.[^1]
It doesn't seems like it's an improvement for the other sizes[^2], so we
let them with the wide implementation.
[^1]: https://rust.godbolt.org/z/ravE75EYj
[^2]: https://rust.godbolt.org/z/fzr171zKh
Rename macro `SmartPointer` to `CoercePointee`
As per resolution #129104 we will rename the macro to better reflect the technical specification of the feature and clarify the communication.
- `SmartPointer` is renamed to `CoerceReferent`
- `#[pointee]` attribute is renamed to `#[referent]`
- `#![feature(derive_smart_pointer)]` gate is renamed to `#![feature(derive_coerce_referent)]`.
- Any mention of `SmartPointer` in the file names are renamed accordingly.
r? `@compiler-errors`
cc `@nikomatsakis` `@Darksonn`
Round negative signed integer towards zero in `iN::midpoint`
This PR changes the implementation of `iN::midpoint` (the signed variants) to round negative signed integers **towards zero** *instead* of negative infinity as is currently the case.
This is done so that the obvious expectations[^1] of `midpoint(a, b) == midpoint(b, a)` and `midpoint(-a, -b) == -midpoint(a, b)` are true, which makes the even more obvious implementation `(a + b) / 2` always true.
The unsigned variants `uN::midpoint` (which are being [FCP-ed](https://github.com/rust-lang/rust/pull/131784#issuecomment-2417188117)) already rounds towards zero, so there is no consistency issue.
cc `@scottmcm`
r? `@dtolnay`
[^1]: https://github.com/rust-lang/rust/issues/110840#issuecomment-2336753931
Instead of towards negative infinity as is currently the case.
This done so that the obvious expectations of
`midpoint(a, b) == midpoint(b, a)` and
`midpoint(-a, -b) == -midpoint(a, b)` are true, which makes the even
more obvious implementation `(a + b) / 2` true.
https://github.com/rust-lang/rust/issues/110840#issuecomment-2336753931
Const stability checks v2
The const stability system has served us well ever since `const fn` were first stabilized. It's main feature is that it enforces *recursive* validity -- a stable const fn cannot internally make use of unstable const features without an explicit marker in the form of `#[rustc_allow_const_fn_unstable]`. This is done to make sure that we don't accidentally expose unstable const features on stable in a way that would be hard to take back. As part of this, it is enforced that a `#[rustc_const_stable]` can only call `#[rustc_const_stable]` functions. However, some problems have been coming up with increased usage:
- It is baffling that we have to mark private or even unstable functions as `#[rustc_const_stable]` when they are used as helpers in regular stable `const fn`, and often people will rather add `#[rustc_allow_const_fn_unstable]` instead which was not our intention.
- The system has several gaping holes: a private `const fn` without stability attributes whose inherited stability (walking up parent modules) is `#[stable]` is allowed to call *arbitrary* unstable const operations, but can itself be called from stable `const fn`. Similarly, `#[allow_internal_unstable]` on a macro completely bypasses the recursive nature of the check.
Fundamentally, the problem is that we have *three* disjoint categories of functions, and not enough attributes to distinguish them:
1. const-stable functions
2. private/unstable functions that are meant to be callable from const-stable functions
3. functions that can make use of unstable const features
Functions in the first two categories cannot use unstable const features and they can only call functions from the first two categories.
This PR implements the following system:
- `#[rustc_const_stable]` puts functions in the first category. It may only be applied to `#[stable]` functions.
- `#[rustc_const_unstable]` by default puts functions in the third category. The new attribute `#[rustc_const_stable_indirect]` can be added to such a function to move it into the second category.
- `const fn` without a const stability marker are in the second category if they are still unstable. They automatically inherit the feature gate for regular calls, it can now also be used for const-calls.
Also, all the holes mentioned above have been closed. There's still one potential hole that is hard to avoid, which is when MIR building automatically inserts calls to a particular function in stable functions -- which happens in the panic machinery. Those need to be manually marked `#[rustc_const_stable_indirect]` to be sure they follow recursive const stability. But that's a fairly rare and special case so IMO it's fine.
The net effect of this is that a `#[unstable]` or unmarked function can be constified simply by marking it as `const fn`, and it will then be const-callable from stable `const fn` and subject to recursive const stability requirements. If it is publicly reachable (which implies it cannot be unmarked), it will be const-unstable under the same feature gate. Only if the function ever becomes `#[stable]` does it need a `#[rustc_const_unstable]` or `#[rustc_const_stable]` marker to decide if this should also imply const-stability.
Adding `#[rustc_const_unstable]` is only needed for (a) functions that need to use unstable const lang features (including intrinsics), or (b) `#[stable]` functions that are not yet intended to be const-stable. Adding `#[rustc_const_stable]` is only needed for functions that are actually meant to be directly callable from stable const code. `#[rustc_const_stable_indirect]` is used to mark intrinsics as const-callable and for `#[rustc_const_unstable]` functions that are actually called from other, exposed-on-stable `const fn`. No other attributes are required.
Also see the updated dev-guide at https://github.com/rust-lang/rustc-dev-guide/pull/2098.
I think in the future we may want to tweak this further, so that in the hopefully common case where a public function's const-stability just exactly mirrors its regular stability, we never have to add any attribute. But right now, once the function is stable this requires `#[rustc_const_stable]`.
### Open question
There is one point I could see we might want to do differently, and that is putting `#[rustc_const_unstable]` functions (but not intrinsics) in category 2 by default, and requiring an extra attribute for `#[rustc_const_not_exposed_on_stable]` or so. This would require a bunch of extra annotations, but would have the advantage that turning a `#[rustc_const_unstable]` into `#[rustc_const_stable]` will never change the way the function is const-checked. Currently, we often discover in the const stabilization PR that a function needs some other unstable const things, and then we rush to quickly deal with that. In this alternative universe, we'd work towards getting rid of the `rustc_const_not_exposed_on_stable` before stabilization, and once that is done stabilization becomes a trivial matter. `#[rustc_const_stable_indirect]` would then only be used for intrinsics.
I think I like this idea, but might want to do it in a follow-up PR, as it will need a whole bunch of annotations in the standard library. Also, we probably want to convert all const intrinsics to the "new" form (`#[rustc_intrinsic]` instead of an `extern` block) before doing this to avoid having to deal with two different ways of declaring intrinsics.
Cc `@rust-lang/wg-const-eval` `@rust-lang/libs-api`
Part of https://github.com/rust-lang/rust/issues/129815 (but not finished since this is not yet sufficient to safely let us expose `const fn` from hashbrown)
Fixes https://github.com/rust-lang/rust/issues/131073 by making it so that const-stable functions are always stable
try-job: test-various
library: consistently use American spelling for 'behavior'
We use "behavior" a lot more often than "behaviour", but some "behaviour" have even snuck into user-facing docs. This makes the spelling consistent.
Fundamentally, we have *three* disjoint categories of functions:
1. const-stable functions
2. private/unstable functions that are meant to be callable from const-stable functions
3. functions that can make use of unstable const features
This PR implements the following system:
- `#[rustc_const_stable]` puts functions in the first category. It may only be applied to `#[stable]` functions.
- `#[rustc_const_unstable]` by default puts functions in the third category. The new attribute `#[rustc_const_stable_indirect]` can be added to such a function to move it into the second category.
- `const fn` without a const stability marker are in the second category if they are still unstable. They automatically inherit the feature gate for regular calls, it can now also be used for const-calls.
Also, several holes in recursive const stability checking are being closed.
There's still one potential hole that is hard to avoid, which is when MIR
building automatically inserts calls to a particular function in stable
functions -- which happens in the panic machinery. Those need to *not* be
`rustc_const_unstable` (or manually get a `rustc_const_stable_indirect`) to be
sure they follow recursive const stability. But that's a fairly rare and special
case so IMO it's fine.
The net effect of this is that a `#[unstable]` or unmarked function can be
constified simply by marking it as `const fn`, and it will then be
const-callable from stable `const fn` and subject to recursive const stability
requirements. If it is publicly reachable (which implies it cannot be unmarked),
it will be const-unstable under the same feature gate. Only if the function ever
becomes `#[stable]` does it need a `#[rustc_const_unstable]` or
`#[rustc_const_stable]` marker to decide if this should also imply
const-stability.
Adding `#[rustc_const_unstable]` is only needed for (a) functions that need to
use unstable const lang features (including intrinsics), or (b) `#[stable]`
functions that are not yet intended to be const-stable. Adding
`#[rustc_const_stable]` is only needed for functions that are actually meant to
be directly callable from stable const code. `#[rustc_const_stable_indirect]` is
used to mark intrinsics as const-callable and for `#[rustc_const_unstable]`
functions that are actually called from other, exposed-on-stable `const fn`. No
other attributes are required.
This commit contains a new Receiver trait, which is the basis for the
Arbitrary Self Types v2 RFC. This allows smart pointers to be method
receivers even if they're not Deref.
This is currently unused by the compiler - a subsequent PR will start to
use this for method resolution if the arbitrary_self_types feature gate
is enabled. This is being landed first simply to make review
simpler: if people feel this should all be in an atomic PR let me know.
This is a part of the arbitrary self types v2 project,
https://github.com/rust-lang/rfcs/pull/3519https://github.com/rust-lang/rust/issues/44874
r? @wesleywiser
Expand `ptr::fn_addr_eq()` documentation.
* Describe more clearly what is (not) guaranteed, and de-emphasize the description of rustc implementation details.
* Explain what you *can* reliably use it for.
Tracking issue for `ptr_fn_addr_eq`: #129322
The motivation for this PR is that I just learned that `ptr::fn_addr_eq()` exists, read the documentation, and thought: “*I* know what this means, but someone not already familiar with how `rustc` works could be left wondering whether this is even good for anything.” Fixing that seems especially important if we’re going to recommend people use it instead of `==` (as per #118833).
Rollup of 6 pull requests
Successful merges:
- #131851 ([musl] use posix_spawn if a directory change was requested)
- #132048 (AIX: use /dev/urandom for random implementation )
- #132093 (compiletest: suppress Windows Error Reporting (WER) for `run-make` tests)
- #132101 (Avoid using imports in thread_local_inner! in static)
- #132113 (Provide a default impl for Pattern::as_utf8_pattern)
- #132115 (rustdoc: Extend fake_variadic to "wrapped" tuples)
r? `@ghost`
`@rustbot` modify labels: rollup
Provide a default impl for Pattern::as_utf8_pattern
Newly added ```Pattern::as_utf8_pattern()``` causes needless breakage for crates that implement Pattern. This provides a default implementation instead.
r? `@BurntSushi`
Avoid using imports in thread_local_inner! in static
Fixes#131863 for wasm targets
All other macros were done in #131866, but this sub module is missed.
r? `@jieyouxu`
AIX: use /dev/urandom for random implementation
On AIX, we can poll `/dev/urandom` for cryptographically secure random output to implement `fill_bytes` because we don't have equivalent syscalls like other platforms. https://www.ibm.com/docs/en/aix/7.3?topic=files-random-urandom-devices
[musl] use posix_spawn if a directory change was requested
Currently, not all libcs have the `posix_spawn_file_actions_addchdir_np` symbol available to them. So we attempt to do a weak symbol lookup for that function. But that only works if libc is a dynamic library -- with statically linked musl binaries the symbol lookup would never work, so we would never be able to use it even if the musl in use supported the symbol.
Now that Rust has a minimum musl version of 1.2.3, all supported musl versions now include this symbol, so we can unconditionally expect it to be there. This symbol was added to libc in https://github.com/rust-lang/libc/pull/3949 -- use it here.
I couldn't find any tests for whether the posix_spawn path is used, but I've verified with cargo-nextest that this change works. This is a substantial improvement to nextest's performance with musl. On my workstation with a Ryzen 7950x, against https://github.com/clap-rs/clap at
61f5ee514f8f60ed8f04c6494bdf36c19e7a8126:
Before:
```
Summary [ 1.071s] 879 tests run: 879 passed, 0 skipped
```
After:
```
Summary [ 0.392s] 879 tests run: 879 passed, 0 skipped
```
Fixes#99740.
try-job: dist-various-1
try-job: dist-various-2
Document textual format of SocketAddrV{4,6}
This commit adds new "Textual representation" documentation sections to SocketAddrV4 and SocketAddrV6, by analogy to the existing "textual representation" sections of Ipv4Addr and Ipv6Addr.
Rationale: Without documentation about which formats are actually accepted, it's hard for a programmer to be sure that their code will actually behave as expected when implementing protocols that require support (or rejection) for particular representations. This lack of clarity can in turn can lead to ambiguities and security problems like those discussed in RFC 6942.
(I've tried to describe the governing RFCs or standards where I could, but it's possible that the actual implementers had something else in mind. I could not find any standards that corresponded _exactly_ to the one implemented in SocketAddrv6, but I have linked the relevant documents that I could find.)
Represent trait constness as a distinct predicate
cc `@rust-lang/project-const-traits`
r? `@ghost` for now
Also mirrored everything that is written below on this hackmd here: https://hackmd.io/`@compiler-errors/r12zoixg1l`
# Tl;dr:
* This PR removes the bulk of the old effect desugaring.
* This PR reimplements most of the effect desugaring as a new predicate and set of a couple queries. I believe it majorly simplifies the implementation and allows us to move forward more easily on its implementation.
I'm putting this up both as a request for comments and a vibe-check, but also as a legitimate implementation that I'd like to see land (though no rush of course on that last part).
## Background
### Early days
Once upon a time, we represented trait constness in the param-env and in `TraitPredicate`. This was very difficult to implement correctly; it had bugs and was also incomplete; I don't think this was anyone's fault though, it was just the limit of experimental knowledge we had at that point.
Dealing with `~const` within predicates themselves meant dealing with constness all throughout the trait solver. This was difficult to keep track of, and afaict was not handled well with all the corners of candidate assembly.
Specifically, we had to (in various places) remap constness according to the param-env constness:
574b64a97f/compiler/rustc_trait_selection/src/traits/select/mod.rs (L1498)
This was annoying and manual and also error prone.
### Beginning of the effects desugaring
Later on, #113210 reimplemented a new desugaring for const traits via a `<const HOST: bool>` predicate. This essentially "reified" the const checking and separated it from any of the remapping or separate tracking in param-envs. For example, if I was in a const-if-const environment, but I wanted to call a trait that was non-const, this reification would turn the constness mismatch into a simple *type* mismatch of the effect parameter.
While this was a monumental step towards straightening out const trait checking in the trait system, it had its own issues, since that meant that the constness of a trait (or any item within it, like an associated type) was *early-bound*. This essentially meant that `<T as Trait>::Assoc` was *distinct* from `<T as ~const Trait>::Assoc`, which was bad.
### Associated-type bound based effects desugaring
After this, #120639 implemented a new effects desugaring. This used an associated type to more clearly represent the fact that the constness is not an input parameter of a trait, but a property that could be computed of a impl. The write-up linked in that PR explains it better than I could.
However, I feel like it really reached the limits of what can comfortably be expressed in terms of associated type and trait calculus. Also, `<const HOST: bool>` remains a synthetic const parameter, which is observable in nested items like RPITs and closures, and comes with tons of its own hacks in the astconv and middle layer.
For example, there are pieces of unintuitive code that are needed to represent semantics like elaboration, and eventually will be needed to make error reporting intuitive, and hopefully in the future assist us in implementing built-in traits (eventually we'll want something like `~const Fn` trait bounds!).
elaboration hack: 8069f8d17a/compiler/rustc_type_ir/src/elaborate.rs (L133-L195)
trait bound remapping hack for diagnostics: 8069f8d17a/compiler/rustc_trait_selection/src/error_reporting/traits/fulfillment_errors.rs (L2370-L2413)
I want to be clear that I don't think this is a issue of implementation quality or anything like that; I think it's simply a very clear sign that we're using types and traits in a way that they're not fundamentally supposed to be used, especially given that constness deserves to be represented as a first-class concept.
### What now?
This PR implements a new desugaring for const traits. Specifically, it introduces a `HostEffect` predicate to represent the obligation an impl is const, rather than using associated type bounds and the compat trait that exists for effects today.
### `HostEffect` predicate
A `HostEffect` clause has two parts -- the `TraitRef` we're trying to prove, and a `HostPolarity::{Maybe, Const}`.
`HostPolarity::Const` corresponds to `T: const Trait` bounds, which must *always* be proven as const, and which can be written in any context. These are lowered directly into the predicates of an item, since they're not "context-specific".
On the other hand, `HostPolarity::Maybe` corresponds to `T: ~const Trait` bounds which must only exist in a conditionally-const context like a method in a `#[const_trait]`, or a `const fn` free function. We do not lower these immediately into the predicates of an item; instead, we collect them into a new query called the **`const_conditions`**. These are the set of trait refs that we need to prove have const implementations for an item to be const.
Notably, they're represented as bare (poly) trait refs because they are meant to be paired back together with a `HostPolarity` when they're being registered in typeck (see next section).
For example, given:
```rust
const fn foo<T: ~const A + const B>() {}
```
`foo`'s const conditions would contain `T: A`, but not `T: B`. On the flip side, foo's predicates (`predicates_of`) query would contain `HostEffect(T: B, HostPolarity::Const)` but not `HostEffect(T: A, HostPolarity::Maybe)` since we don't need to prove that predicate in a non-const environment (and it's not even the right predicate to prove in an unconditionally const environment).
### Type checking const bodies
When type checking bodies in HIR, when we encounter a call expression, we additionally register the callee item's const conditions with the `HostPolarity` from the body we're typechecking (`Const` for unconditionally const things like `const`/`static` items, and `Maybe` for conditionally const things like const fns; and we don't register `HostPolarity` predicates for non-const bodies).
When type-checking a conditionally const body, we augment its param-env with `HostEffect(..., Maybe)` predicates.
### Checking that const impls are WF
We extend the logic in `compare_method_predicate_entailment` to also check the const-conditions of the impl method, to make sure that we error for:
```rust
#[const_trait] Bar {}
#[const_trait] trait Foo {
fn method<T: Bar>();
}
impl Foo for () {
fn method<T: ~const Bar>() {} // stronger assumption!
}
```
We also extend the WF check for impls to register the const conditions of the trait that is being implemented. This is to make sure we error for:
```rust
#[const_trait] trait Bar {}
#[const_trait] trait Foo<T> where T: ~const Bar {}
impl<T> const Foo<T> for () {}
//~^ `T: ~const Bar` is missing!
```
### Proving a `HostEffect` predicate
We have several ways of proving a `HostEffect` predicate:
1. Matching a `HostEffect` predicate from the param-env
2. From an impl - we do impl selection very similar to confirming a trait goal, except we filter for only const impls, and we additionally register the impl's const conditions (i.e. the impl's `~const` where clauses).
Later I expect that we will add more built-in implementations for things like `Fn`.
## What next?
After this PR, I'd like to split out the work more so it can proceed in parallel and probably amongst others that are not me.
* Register `HostEffect` goal for places in HIR typeck that correspond to call terminators, like autoderef.
* Make traits in libstd const again.
* Probably need to impl host effect preds in old solver.
* Implement built-in `HostEffect` rules for traits like `Fn`.
* Rip out const checking from MIR altogether.
## So what?
This ends up being super convenient basically everywhere in the compiler. Due to the design of the new trait solver, we end up having an almost parallel structure to the existing trait and projection predicates for assembling `HostEffect` predicates; adding new candidates and especially new built-in implementations is now basically trivial, and it's quite straightforward to understand the confirmation logic for these predicates.
Same with diagnostics reporting; since we have predicates which represent the obligation to prove an impl is const, we can simplify and make these diagnostics richer without having to write a ton of logic to intercept and rewrite the existing `Compat` trait errors.
Finally, it gives us a much more straightforward path for supporting the const effect on the old trait solver. I'm personally quite passionate about getting const trait support into the hands of users without having to wait until the new solver lands[^1], so I think after this PR lands we can begin to gauge how difficult it would be to implement constness in the old trait solver too. This PR will not do this yet.
[^1]: Though this is not a prerequisite or by any means the only justification for this PR.
Remove the `Arc` rt::init allocation for thread info
Removes an allocation pre-main by just not storing anything in std:🧵:Thread for the main thread.
- The thread name can just be a hard coded literal, as was done in #123433.
- Storing ThreadId and Parker in a static that is initialized once at startup. This uses SyncUnsafeCell and MaybeUninit as this is quite performance critical and we don't need synchronization or to store a tag value and possibly leave in a panic.
This commit adds new "Textual representation" documentation sections to
SocketAddrV4 and SocketAddrV6, by analogy to the existing
"textual representation" sections of Ipv4Addr and Ipv6Addr.
Rationale: Without documentation about which formats are actually
accepted, it's hard for a programmer to be sure that their code
will actually behave as expected when implementing protocols that
require support (or rejection) for particular representations.
This lack of clarity can in turn can lead to ambiguities and
security problems like those discussed in RFC 6942.
(I've tried to describe the governing RFCs or standards where I
could, but it's possible that the actual implementers had something
else in mind. I could not find any standards that corresponded
_exactly_ to the one implemented in SocketAddrv6, but I have linked
the relevant documents that I could find.)
Currently, not all libcs have the `posix_spawn_file_actions_addchdir_np` symbol
available to them. So we attempt to do a weak symbol lookup for that function.
But that only works if libc is a dynamic library -- with statically linked musl
binaries the symbol lookup would never work, so we would never be able to use it
even if the musl in use supported the symbol.
Now that Rust has a minimum musl version of 1.2.3, all supported musl versions
now include this symbol, so we can unconditionally expect it to be there. This
symbol was added to libc in https://github.com/rust-lang/libc/pull/3949 -- use
it here.
I couldn't find any tests for whether the posix_spawn path is used, but I've
verified with cargo-nextest that this change works. This is a substantial
improvement to nextest's performance with musl. On my workstation with a Ryzen
7950x, against https://github.com/clap-rs/clap at
61f5ee514f8f60ed8f04c6494bdf36c19e7a8126:
Before:
```
Summary [ 1.071s] 879 tests run: 879 passed, 0 skipped
```
After:
```
Summary [ 0.392s] 879 tests run: 879 passed, 0 skipped
```
Fixes#99740.
Rename Receiver -> LegacyReceiver
As part of the "arbitrary self types v2" project, we are going to replace the current `Receiver` trait with a new mechanism based on a new, different `Receiver` trait.
This PR renames the old trait to get it out the way. Naming is hard. Options considered included:
* HardCodedReceiver (because it should only be used for things in the standard library, and hence is sort-of hard coded)
* LegacyReceiver
* TargetLessReceiver
* OldReceiver
These are all bad names, but fortunately this will be temporary. Assuming the new mechanism proceeds to stabilization as intended, the legacy trait will be removed altogether.
Although we expect this trait to be used only in the standard library, we suspect it may be in use elsehwere, so we're landing this change separately to identify any surprising breakages.
It's known that this trait is used within the Rust for Linux project; a patch is in progress to remove their dependency.
This is a part of the arbitrary self types v2 project,
https://github.com/rust-lang/rfcs/pull/3519https://github.com/rust-lang/rust/issues/44874
r? `@wesleywiser`
"innermost", "outermost", "leftmost", and "rightmost" don't need hyphens
These are all standard dictionary words and don't require hyphenation.
-----
Encountered an instance of this in error messages and it bugged me, so I
figured I'd fix it across the entire codebase.