fix normalizing in different `ParamEnv`s with the same `InferCtxt`
This PR changes the key of the projection cache from just `AliasTy` to `(AliasTy, ParamEnv)` to allow normalizing in different `ParamEnv`s without resetting caches. Previously, normalizing the same alias in different param envs would always reuse the cached result from the first normalization, which is incorrect if the projection clauses in the param env have changed.
Fixing this bug allows us to get rid of `InferCtxt::clear_caches`, which was only used by the `AutoTraitFinder`, because it requires normalizing in different param envs.
r? `@fmease`
Subtype predicates only exist on inference types, so we can allow them to register opaque types within them.
We were unable to come up with an example where this could be reached (subtype predicates with either side not being an infer var gets consumed during any `select_where_possible` invocation, of which we have a lot in typeck). To ensure we don't silently accept new behaviour in case we missed a situation where this could occur, I have added an assert that prevents opaque types from having their hidden type constrained.
r? `@compiler-errors`
Implement syntax for `impl Trait` to specify its captures explicitly (`feature(precise_capturing)`)
Implements `impl use<'a, 'b, T, U> Sized` syntax that allows users to explicitly list the captured parameters for an opaque, rather than inferring it from the opaque's bounds (or capturing *all* lifetimes under 2024-edition capture rules). This allows us to exclude some implicit captures, so this syntax may be used as a migration strategy for changes due to #117587.
We represent this list of captured params as `PreciseCapturingArg` in AST and HIR, resolving them between `rustc_resolve` and `resolve_bound_vars`. Later on, we validate that the opaques only capture the parameters in this list.
We artificially limit the feature to *require* mentioning all type and const parameters, since we don't currently have support for non-lifetime bivariant generics. This can be relaxed in the future.
We also may need to limit this to require naming *all* lifetime parameters for RPITIT, since GATs have no variance. I have to investigate this. This can also be relaxed in the future.
r? `@oli-obk`
Tracking issue:
- https://github.com/rust-lang/rust/issues/123432
Remove `TypeVariableOriginKind` and `ConstVariableOriginKind`
It's annoying to have to import `TypeVariableOriginKind` just to fill it with `MiscVariable` for almost every use. Every other usage other than `TypeParameterDefinition` wasn't even used -- I can see how it may have been useful once for debugging, but I do quite a lot of typeck debugging and I've never really needed it.
So let's just remove it, and keep around the only useful thing which is the `DefId` of the param for `var_for_def`.
This is based on #123006, which removed the special use of `TypeVariableOriginKind::OpaqueInference`, which I'm pretty sure I was the one that added.
r? lcnr or re-roll to types
Use `fn` ptr signature instead of `{closure@..}` in infer error
When suggesting a type on inference error, do not use `{closure@..}`. Instead, replace with an appropriate `fn` ptr.
On the error message, use `short_ty_string` and write long types to disk.
```
error[E0284]: type annotations needed for `Select<{closure@lib.rs:2782:13}, _, Expression<'_>, _>`
--> crates/lang/src/parser.rs:41:13
|
41 | let lit = select! {
| ^^^
42 | Token::Int(i) = e => Expression::new(Expr::Lit(ast::Lit::Int(i.parse().unwrap())), e.span()),
| ---- type must be known at this point
|
= note: the full type name has been written to '/home/gh-estebank/iowo/target/debug/deps/lang-e2d6e25819442273.long-type-4587393693885174369.txt'
= note: cannot satisfy `<_ as chumsky::input::Input<'_>>::Span == SimpleSpan`
help: consider giving `lit` an explicit type, where the type for type parameter `I` is specified
|
41 | let lit: Select<for<'a, 'b> fn(tokens::Token<'_>, &'a mut MapExtra<'_, 'b, _, _>) -> Option<Expression<'_>>, _, Expression<'_>, _> = select! {
| +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
```
instead of
```
error[E0284]: type annotations needed for `Select<{closure@/home/gh-estebank/.cargo/registry/src/index.crates.io-6f17d22bba15001f/chumsky-1.0.0-alpha.6/src/lib.rs:2782:13: 2782:28}, _, Expression<'_>, _>`
--> crates/lang/src/parser.rs:41:13
|
41 | let lit = select! {
| ^^^
42 | Token::Int(i) = e => Expression::new(Expr::Lit(ast::Lit::Int(i.parse().unwrap())), e.span()),
| ---- type must be known at this point
|
= note: cannot satisfy `<_ as chumsky::input::Input<'_>>::Span == SimpleSpan`
help: consider giving `lit` an explicit type, where the type for type parameter `I` is specified
|
41 | let lit: Select<{closure@/home/gh-estebank/.cargo/registry/src/index.crates.io-6f17d22bba15001f/chumsky-1.0.0-alpha.6/src/lib.rs:2782:13: 2782:28}, _, Expression<'_>, _> = select! {
| ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
```
Address #123630 (test missing).
When suggesting a type on inference error, do not use `{closure@..}`.
Instead, replace with an appropriate `fn` ptr.
On the error message, use `short_ty_string` and write long types to
disk.
```
error[E0284]: type annotations needed for `Select<{closure@lib.rs:2782:13}, _, Expression<'_>, _>`
--> crates/lang/src/parser.rs:41:13
|
41 | let lit = select! {
| ^^^
42 | Token::Int(i) = e => Expression::new(Expr::Lit(ast::Lit::Int(i.parse().unwrap())), e.span()),
| ---- type must be known at this point
|
= note: the full type name has been written to '/home/gh-estebank/iowo/target/debug/deps/lang-e2d6e25819442273.long-type-4587393693885174369.txt'
= note: cannot satisfy `<_ as chumsky::input::Input<'_>>::Span == SimpleSpan`
help: consider giving `lit` an explicit type, where the type for type parameter `I` is specified
|
41 | let lit: Select<for<'a, 'b> fn(tokens::Token<'_>, &'a mut MapExtra<'_, 'b, _, _>) -> Option<Expression<'_>>, _, Expression<'_>, _> = select! {
| +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
```
instead of
```
error[E0284]: type annotations needed for `Select<{closure@/home/gh-estebank/.cargo/registry/src/index.crates.io-6f17d22bba15001f/chumsky-1.0.0-alpha.6/src/lib.rs:2782:13: 2782:28}, _, Expression<'_>, _>`
--> crates/lang/src/parser.rs:41:13
|
41 | let lit = select! {
| ^^^
42 | Token::Int(i) = e => Expression::new(Expr::Lit(ast::Lit::Int(i.parse().unwrap())), e.span()),
| ---- type must be known at this point
|
= note: cannot satisfy `<_ as chumsky::input::Input<'_>>::Span == SimpleSpan`
help: consider giving `lit` an explicit type, where the type for type parameter `I` is specified
|
41 | let lit: Select<{closure@/home/gh-estebank/.cargo/registry/src/index.crates.io-6f17d22bba15001f/chumsky-1.0.0-alpha.6/src/lib.rs:2782:13: 2782:28}, _, Expression<'_>, _> = select! {
| ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
```
Fix#123630.
Pass list of defineable opaque types into canonical queries
This eliminates `DefiningAnchor::Bubble` for good and brings the old solver closer to the new one wrt cycles and nested obligations. At that point the difference between `DefiningAnchor::Bind([])` and `DefiningAnchor::Error` was academic. We only used the difference for some sanity checks, which actually had to be worked around in places, so I just removed `DefiningAnchor` entirely and just stored the list of opaques that may be defined.
fixes#108498
fixes https://github.com/rust-lang/rust/issues/116877
* [x] run crater
- https://github.com/rust-lang/rust/pull/122077#issuecomment-2013293931
compiler: fix few unused_peekable and needless_pass_by_ref_mut clippy lints
This fixes few instances of `unused_peekable` and `needless_pass_by_ref_mut`. While i expected to fix more warnings, `needless_pass_by_ref_mut` produced too much for one PR, so i stopped here.
Better reviewed commit by commit, as fixes splitted by chunks.
warning: this argument is a mutable reference, but not used mutably
--> compiler\rustc_session\src\config.rs:2013:16
|
2013 | early_dcx: &mut EarlyDiagCtxt,
| ^^^^^^^^^^^^^^^^^^ help: consider changing to: `&EarlyDiagCtxt`
|
= help: for further information visit https://rust-lang.github.io/rust-clippy/master/index.html#needless_pass_by_ref_mut
warning: this argument is a mutable reference, but not used mutably
--> compiler\rustc_ast_passes\src\ast_validation.rs:1555:11
|
1555 | this: &mut AstValidator<'_>,
| ^^^^^^^^^^^^^^^^^^^^^ help: consider changing to: `&AstValidator<'_>`
|
= help: for further information visit https://rust-lang.github.io/rust-clippy/master/index.html#needless_pass_by_ref_mut
warning: this argument is a mutable reference, but not used mutably
--> compiler\rustc_infer\src\infer\snapshot\fudge.rs:16:12
|
16 | table: &mut UnificationTable<'_, 'tcx, T>,
| ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ help: consider changing to: `&UnificationTable<'_, 'tcx, T>`
|
= help: for further information visit https://rust-lang.github.io/rust-clippy/master/index.html#needless_pass_by_ref_mut
warning: this argument is a mutable reference, but not used mutably
--> compiler\rustc_expand\src\expand.rs:961:13
|
961 | parser: &mut Parser<'a>,
| ^^^^^^^^^^^^^^^ help: consider changing to: `&Parser<'a>`
|
= warning: changing this function will impact semver compatibility
= help: for further information visit https://rust-lang.github.io/rust-clippy/master/index.html#needless_pass_by_ref_mut
Handle str literals written with `'` lexed as lifetime
Given `'hello world'` and `'1 str', provide a structured suggestion for a valid string literal:
```
error[E0762]: unterminated character literal
--> $DIR/lex-bad-str-literal-as-char-3.rs:2:26
|
LL | println!('hello world');
| ^^^^
|
help: if you meant to write a `str` literal, use double quotes
|
LL | println!("hello world");
| ~ ~
```
```
error[E0762]: unterminated character literal
--> $DIR/lex-bad-str-literal-as-char-1.rs:2:20
|
LL | println!('1 + 1');
| ^^^^
|
help: if you meant to write a `str` literal, use double quotes
|
LL | println!("1 + 1");
| ~ ~
```
Fix#119685.
Rename `hir::Local` into `hir::LetStmt`
Follow-up of #122776.
As discussed on [zulip](https://rust-lang.zulipchat.com/#narrow/stream/131828-t-compiler/topic/Improve.20naming.20of.20.60ExprKind.3A.3ALet.60.3F).
I made this change into a separate PR because I'm less sure about this change as is. For example, we have `visit_local` and `LocalSource` items. Is it fine to keep these two as is (I supposed it is but I prefer to ask) or not? Having `Node::Local(LetStmt)` makes things more explicit but is it going too far?
r? ```@oli-obk```
Split an item bounds and an item's super predicates
This is the moral equivalent of #107614, but instead for predicates this applies to **item bounds**. This PR splits out the item bounds (i.e. *all* predicates that are assumed to hold for the alias) from the item *super predicates*, which are the subset of item bounds which share the same self type as the alias.
## Why?
Much like #107614, there are places in the compiler where we *only* care about super-predicates, and considering predicates that possibly don't have anything to do with the alias is problematic. This includes things like closure signature inference (which is at its core searching for `Self: Fn(..)` style bounds), but also lints like `#[must_use]`, error reporting for aliases, computing type outlives predicates.
Even in cases where considering all of the `item_bounds` doesn't lead to bugs, unnecessarily considering irrelevant bounds does lead to a regression (#121121) due to doing extra work in the solver.
## Example 1 - Trait Aliases
This is best explored via an example:
```
type TAIT<T> = impl TraitAlias<T>;
trait TraitAlias<T> = A + B where T: C;
```
The item bounds list for `Tait<T>` will include:
* `Tait<T>: A`
* `Tait<T>: B`
* `T: C`
While `item_super_predicates` query will include just the first two predicates.
Side-note: You may wonder why `T: C` is included in the item bounds for `TAIT`? This is because when we elaborate `TraitAlias<T>`, we will also elaborate all the predicates on the trait.
## Example 2 - Associated Type Bounds
```
type TAIT<T> = impl Iterator<Item: A>;
```
The `item_bounds` list for `TAIT<T>` will include:
* `Tait<T>: Iterator`
* `<Tait<T> as Iterator>::Item: A`
But the `item_super_predicates` will just include the first bound, since that's the only bound that is relevant to the *alias* itself.
## So what
This leads to some diagnostics duplication just like #107614, but none of it will be user-facing. We only see it in the UI test suite because we explicitly disable diagnostic deduplication.
Regarding naming, I went with `super_predicates` kind of arbitrarily; this can easily be changed, but I'd consider better names as long as we don't block this PR in perpetuity.
Fix bad span for explicit lifetime suggestions
Fixes#121267
Current explicit lifetime suggestions are not showing correct spans for some lifetimes - e.g. elided lifetime generic parameters;
This should be done correctly regarding elided lifetime kind like the following code
43fdd4916d/compiler/rustc_resolve/src/late/diagnostics.rs (L3015-L3044)
Rollup of 10 pull requests
Successful merges:
- #122435 (Don't trigger `unused_qualifications` on global paths)
- #122556 (Extend format arg help for simple tuple index access expression)
- #122634 (compiletest: Add support for `//@ aux-bin: foo.rs`)
- #122677 (Fix incorrect mutable suggestion information for binding in ref pattern.)
- #122691 (Fix ICE: `global_asm!()` Don't Panic When Unable to Evaluate Constant)
- #122695 (Change only_local to a enum type.)
- #122717 (Ensure stack before parsing dot-or-call)
- #122719 (Ensure nested statics have a HIR node to prevent various queries from ICEing)
- #122720 ([doc]:fix error code example)
- #122724 (add test for casting pointer to union with unsized tail)
r? `@ghost`
`@rustbot` modify labels: rollup
misc cleanups from debugging something
rename `instantiate_canonical_with_fresh_inference_vars` to `instantiate_canonical` the substs for the canonical are not solely infer vars as that would be wildly wrong and it is rather confusing to see this method called and think that the entire canonicalization setup is completely broken when it is not 👍
also update region debug printing to be more like the custom impls for Ty/Const, right now regions in debug output are horribly verbose and make it incredibly hard to read but with this atleast boundvars and placeholders when debugging the new solver do not take up excessive amounts of space.
r? `@lcnr`
Stabilize associated type bounds (RFC 2289)
This PR stabilizes associated type bounds, which were laid out in [RFC 2289]. This gives us a shorthand to express nested type bounds that would otherwise need to be expressed with nested `impl Trait` or broken into several `where` clauses.
### What are we stabilizing?
We're stabilizing the associated item bounds syntax, which allows us to put bounds in associated type position within other bounds, i.e. `T: Trait<Assoc: Bounds...>`. See [RFC 2289] for motivation.
In all position, the associated type bound syntax expands into a set of two (or more) bounds, and never anything else (see "How does this differ[...]" section for more info).
Associated type bounds are stabilized in four positions:
* **`where` clauses (and APIT)** - This is equivalent to breaking up the bound into two (or more) `where` clauses. For example, `where T: Trait<Assoc: Bound>` is equivalent to `where T: Trait, <T as Trait>::Assoc: Bound`.
* **Supertraits** - Similar to above, `trait CopyIterator: Iterator<Item: Copy> {}`. This is almost equivalent to breaking up the bound into two (or more) `where` clauses; however, the bound on the associated item is implied whenever the trait is used. See #112573/#112629.
* **Associated type item bounds** - This allows constraining the *nested* rigid projections that are associated with a trait's associated types. e.g. `trait Trait { type Assoc: Trait2<Assoc2: Copy>; }`.
* **opaque item bounds (RPIT, TAIT)** - This allows constraining associated types that are associated with the opaque without having to *name* the opaque. For example, `impl Iterator<Item: Copy>` defines an iterator whose item is `Copy` without having to actually name that item bound.
The latter three are not expressible in surface Rust (though for associated type item bounds, this will change in #120752, which I don't believe should block this PR), so this does represent a slight expansion of what can be expressed in trait bounds.
### How does this differ from the RFC?
Compared to the RFC, the current implementation *always* desugars associated type bounds to sets of `ty::Clause`s internally. Specifically, it does *not* introduce a position-dependent desugaring as laid out in [RFC 2289], and in particular:
* It does *not* desugar to anonymous associated items in associated type item bounds.
* It does *not* desugar to nested RPITs in RPIT bounds, nor nested TAITs in TAIT bounds.
This position-dependent desugaring laid out in the RFC existed simply to side-step limitations of the trait solver, which have mostly been fixed in #120584. The desugaring laid out in the RFC also added unnecessary complication to the design of the feature, and introduces its own limitations to, for example:
* Conditionally lowering to nested `impl Trait` in certain positions such as RPIT and TAIT means that we inherit the limitations of RPIT/TAIT, namely lack of support for higher-ranked opaque inference. See this code example: https://github.com/rust-lang/rust/pull/120752#issuecomment-1979412531.
* Introducing anonymous associated types makes traits no longer object safe, since anonymous associated types are not nameable, and all associated types must be named in `dyn` types.
This last point motivates why this PR is *not* stabilizing support for associated type bounds in `dyn` types, e.g, `dyn Assoc<Item: Bound>`. Why? Because `dyn` types need to have *concrete* types for all associated items, this would necessitate a distinct lowering for associated type bounds, which seems both complicated and unnecessary compared to just requiring the user to write `impl Trait` themselves. See #120719.
### Implementation history:
Limited to the significant behavioral changes and fixes and relevant PRs, ping me if I left something out--
* #57428
* #108063
* #110512
* #112629
* #120719
* #120584Closes#52662
[RFC 2289]: https://rust-lang.github.io/rfcs/2289-associated-type-bounds.html
hir: Remove `opt_local_def_id_to_hir_id` and `opt_hir_node_by_def_id`
Also replace a few `hir_node()` calls with `hir_node_by_def_id()`.
Follow up to https://github.com/rust-lang/rust/pull/120943.
Add a tidy check that checks whether the fluent slugs only appear once
As ``````@Nilstrieb`````` said in https://github.com/rust-lang/rust/pull/121828#issuecomment-1972622855:
> Might make sense to have a tidy check that checks whether the fluent slugs only appear once in the source code and lint for that
there's a tidy check already for sorting
We can get the tidy check error:
```
tidy check
tidy error: /path/to/rust/compiler/rustc_const_eval/messages.ftl: message `const_eval_invalid_align` is not used
tidy error: /path/to/rust/compiler/rustc_lint/messages.ftl: message `lint_trivial_untranslatable_diag` is not used
tidy error: /path/to/rust/compiler/rustc_parse/messages.ftl: message `parse_invalid_literal_suffix` is not used
tidy error: /path/to/rust/compiler/rustc_infer/messages.ftl: message `infer_need_type_info_in_coroutine` is not used
tidy error: /path/to/rust/compiler/rustc_passes/messages.ftl: message `passes_expr_not_allowed_in_context` is not used
tidy error: /path/to/rust/compiler/rustc_passes/messages.ftl: message `passes_layout` is not used
tidy error: /path/to/rust/compiler/rustc_parse/messages.ftl: message `parse_not_supported` is not used
```
r? ``````@Nilstrieb``````
Use `ControlFlow` in visitors.
Follow up to #121256
This does have a few small behaviour changes in some diagnostic output where the visitor will now find the first match rather than the last match. The change in `find_anon_types.rs` has the only affected test. I don't see this being an issue as the last occurrence isn't any better of a choice than the first.