Fix `...` in multline code-skips in suggestions
When we have long code skips, we write `...` in the line number gutter.
For suggestions, we were "centering" the `...` with the line, but that was inconsistent with what we do in every other case *and* off-center.
When we have long code skips, we write `...` in the line number gutter.
For suggestions, we were "centering" the `...` with the line, but that was consistent with what we do in every other case.
Resolve elided lifetimes in assoc const to static if no other lifetimes are in scope
Implements the change to elided lifetime resolution in *associated consts* subject to FCP here: https://github.com/rust-lang/rust/issues/125190#issue-2301532282
Specifically, walk the enclosing lifetime ribs in an associated const, and if we find no other lifetimes, then resolve to `'static`.
Also make it work for traits, but don't lint -- just give a hard error in that case.
Spell out other trait diagnostic
I recently saw somebody confused about the diagnostic thinking it was suggesting to add an `as` cast. This change is longer but I think it's clearer
When both `std::` and `core::` items are available, only suggest the
`std::` ones. We ensure that in `no_std` crates we suggest `core::`
items.
Ensure that the list of items suggested to be imported are always in the
order of local crate items, `std`/`core` items and finally foreign crate
items.
Tweak wording of import suggestion: if there are multiple items but they
are all of the same kind, we use the kind name and not the generic "items".
Fix#83564.
Fix ICE due to `unwrap` in `probe_for_name_many`
Fixes#125876
Now `probe_for_name_many` bubbles up the error returned by `probe_op` instead of calling `unwrap` on it.
Detect pub structs never constructed and unused associated constants
<!--
If this PR is related to an unstable feature or an otherwise tracked effort,
please link to the relevant tracking issue here. If you don't know of a related
tracking issue or there are none, feel free to ignore this.
This PR will get automatically assigned to a reviewer. In case you would like
a specific user to review your work, you can assign it to them by using
r? <reviewer name>
-->
Lints never constructed public structs.
If we don't provide public methods to construct public structs with private fields, and don't construct them in the local crate. They would be never constructed. So that we can detect such public structs.
---
Update:
Also lints unused associated constants in traits.
Improve renaming suggestion for names with leading underscores
Fixes#125650
Before:
```
error[E0425]: cannot find value `p` in this scope
--> test.rs:2:13
|
2 | let _ = p;
| ^
|
help: a local variable with a similar name exists, consider renaming `_p` into `p`
|
1 | fn a(p: i32) {
| ~
```
After:
```
error[E0425]: cannot find value `p` in this scope
--> test.rs:2:13
|
1 | fn a(_p: i32) {
| -- `_p` defined here
2 | let _ = p;
| ^
|
help: the leading underscore in `_p` marks it as unused, consider renaming it to `p`
|
1 | fn a(p: i32) {
| ~
```
This change doesn't exactly conform to what was proposed in the issue:
1. I've kept the suggested code instead of solely replacing it with the label
2. I've removed the "...similar name exists..." message instead of relocating to the usage span
3. You could argue that it still isn't completely clear that the change is referring to the definition (not the usage), but I'm not sure how to do this without playing down the fact that the error was caused by the usage of an undefined name.
Make TLS accessors closures that return pointers
The current TLS macros generate a function that returns an `Option<&'static T>`. This is both risky as we lie about lifetimes, and necessitates that those functions are `unsafe`. By returning a `*const T` instead, the accessor function do not have safety requirements any longer and can be made closures without hassle. This PR does exactly that!
For native TLS, the closure approach makes it trivial to select the right accessor function at compile-time, which could result in a slight speed-up (I have the hope that the accessors are now simple enough for the MIR-inliner to kick in).
Do not suggest unresolvable builder methods
Fixes#125303
The issue was that when a builder method cannot be resolved we are suggesting alternatives that themselves cannot be resolved. This PR adds a check that filters them from the list of suggestions.
Remove braces when fixing a nested use tree into a single item
[Back in 2019](https://github.com/rust-lang/rust/pull/56645) I added rustfix support for the `unused_imports` lint, to automatically remove them when running `cargo fix`. For the most part this worked great, but when removing all but one childs of a nested use tree it turned `use foo::{Unused, Used}` into `use foo::{Used}`. This is slightly annoying, because it then requires you to run `rustfmt` to get `use foo::Used`.
This PR automatically removes braces and the surrouding whitespace when all but one child of a nested use tree are unused. To get it done I had to add the span of the nested use tree to the AST, and refactor a bit the code I wrote back then.
A thing I noticed is, there doesn't seem to be any `//@ run-rustfix` test for fixing the `unused_imports` lint. I created a test in `tests/suggestions` (is that the right directory?) that for now tests just what I added in the PR. I can followup in a separate PR to add more tests for fixing `unused_lints`.
This PR is best reviewed commit-by-commit.
```
error[E0499]: cannot borrow `foo` as mutable more than once at a time
--> $DIR/suggest-split-at-mut.rs:13:18
|
LL | let a = &mut foo[..2];
| --- first mutable borrow occurs here
LL | let b = &mut foo[2..];
| ^^^ second mutable borrow occurs here
LL | a[0] = 5;
| ---- first borrow later used here
|
= help: use `.split_at_mut(position)` or similar method to obtain two mutable non-overlapping sub-slices
```
Address most of #58792.
For follow up work, we should emit a structured suggestion for cases where we can identify the exact `let (a, b) = foo.split_at_mut(2);` call that is needed.
```
error[E0507]: cannot move out of `bar`, a captured variable in an `FnMut` closure
--> $DIR/borrowck-move-by-capture.rs:9:29
|
LL | let bar: Box<_> = Box::new(3);
| --- captured outer variable
LL | let _g = to_fn_mut(|| {
| -- captured by this `FnMut` closure
LL | let _h = to_fn_once(move || -> isize { *bar });
| ^^^^^^^^^^^^^^^^ ----
| | |
| | variable moved due to use in closure
| | move occurs because `bar` has type `Box<isize>`, which does not implement the `Copy` trait
| `bar` is moved here
|
help: clone the value before moving it into the closure
|
LL ~ let value = bar.clone();
LL ~ let _h = to_fn_once(move || -> isize { value });
|
```
```
error[E0382]: use of moved value: `t`
--> $DIR/use_of_moved_value_copy_suggestions.rs:7:9
|
LL | fn duplicate_t<T>(t: T) -> (T, T) {
| - move occurs because `t` has type `T`, which does not implement the `Copy` trait
...
LL | (t, t)
| - ^ value used here after move
| |
| value moved here
|
help: if `T` implemented `Clone`, you could clone the value
--> $DIR/use_of_moved_value_copy_suggestions.rs:4:16
|
LL | fn duplicate_t<T>(t: T) -> (T, T) {
| ^ consider constraining this type parameter with `Clone`
...
LL | (t, t)
| - you could clone this value
help: consider restricting type parameter `T`
|
LL | fn duplicate_t<T: Copy>(t: T) -> (T, T) {
| ++++++
```
The `help` is new. On ADTs, we also extend the output with span labels:
```
error[E0507]: cannot move out of static item `FOO`
--> $DIR/issue-17718-static-move.rs:6:14
|
LL | let _a = FOO;
| ^^^ move occurs because `FOO` has type `Foo`, which does not implement the `Copy` trait
|
note: if `Foo` implemented `Clone`, you could clone the value
--> $DIR/issue-17718-static-move.rs:1:1
|
LL | struct Foo;
| ^^^^^^^^^^ consider implementing `Clone` for this type
...
LL | let _a = FOO;
| --- you could clone this value
help: consider borrowing here
|
LL | let _a = &FOO;
| +
```
Rollup of 7 pull requests
Successful merges:
- #120929 (Wrap dyn type with parentheses in suggestion)
- #122591 (Suggest using type args directly instead of equality constraint)
- #122598 (deref patterns: lower deref patterns to MIR)
- #123048 (alloc::Layout: explicitly document size invariant on the type level)
- #123993 (Do `check_coroutine_obligations` once per typeck root)
- #124218 (Allow nesting subdiagnostics in #[derive(Subdiagnostic)])
- #124285 (Mark ``@RUSTC_BUILTIN`` search path usage as unstable)
r? `@ghost`
`@rustbot` modify labels: rollup
Suggest using type args directly instead of equality constraint
When type arguments are written erroneously using an equality constraint we suggest specifying them directly without the equality constraint.
Fixes#122162
Changes the diagnostic in the issue from:
```rust
error[E0229]: associated type bindings are not allowed here
9 | impl std::cmp::PartialEq<Rhs = T> for S {
| ^^^^^^^ associated type not allowed here
|
```
to
```rust
error[E0229]: associated type bindings are not allowed here
9 | impl std::cmp::PartialEq<Rhs = T> for S {
| ^^^^^^^ associated type not allowed here
|
help: to use `T` as a generic argument specify it directly
|
| impl std::cmp::PartialEq<T> for S {
| ~
```
Use fulfillment in method probe, not evaluation
This PR reworks method probing to use fulfillment instead of a `for`-loop of `evaluate_predicate` calls, and moves normalization from method candidate assembly into the `consider_probe`, where it's applied to *all* candidates. This last part coincidentally fixes https://github.com/rust-lang/rust/issues/121643#issuecomment-1975371248.
Regarding *why* this large rewrite is done: In general, it's an anti-pattern to do `for o in obligations { evaluate(o); }` because it's not compatible with the way that the new solver emits alias-relate obligations which constrain variables that may show up in other predicates.
r? lcnr
Detect borrow checker errors where `.clone()` would be an appropriate user action
When a value is moved twice, suggest cloning the earlier move:
```
error[E0509]: cannot move out of type `U2`, which implements the `Drop` trait
--> $DIR/union-move.rs:49:18
|
LL | move_out(x.f1_nocopy);
| ^^^^^^^^^^^
| |
| cannot move out of here
| move occurs because `x.f1_nocopy` has type `ManuallyDrop<RefCell<i32>>`, which does not implement the `Copy` trait
|
help: consider cloning the value if the performance cost is acceptable
|
LL | move_out(x.f1_nocopy.clone());
| ++++++++
```
When a value is borrowed by an `fn` call, consider if cloning the result of the call would be reasonable, and suggest cloning that, instead of the argument:
```
error[E0505]: cannot move out of `a` because it is borrowed
--> $DIR/variance-issue-20533.rs:53:14
|
LL | let a = AffineU32(1);
| - binding `a` declared here
LL | let x = bat(&a);
| -- borrow of `a` occurs here
LL | drop(a);
| ^ move out of `a` occurs here
LL | drop(x);
| - borrow later used here
|
help: consider cloning the value if the performance cost is acceptable
|
LL | let x = bat(&a).clone();
| ++++++++
```
otherwise, suggest cloning the argument:
```
error[E0505]: cannot move out of `a` because it is borrowed
--> $DIR/variance-issue-20533.rs:59:14
|
LL | let a = ClonableAffineU32(1);
| - binding `a` declared here
LL | let x = foo(&a);
| -- borrow of `a` occurs here
LL | drop(a);
| ^ move out of `a` occurs here
LL | drop(x);
| - borrow later used here
|
help: consider cloning the value if the performance cost is acceptable
|
LL - let x = foo(&a);
LL + let x = foo(a.clone());
|
```
This suggestion doesn't attempt to square out the types between what's cloned and what the `fn` expects, to allow the user to make a determination on whether to change the `fn` call or `fn` definition themselves.
Special case move errors caused by `FnOnce`:
```
error[E0382]: use of moved value: `blk`
--> $DIR/once-cant-call-twice-on-heap.rs:8:5
|
LL | fn foo<F:FnOnce()>(blk: F) {
| --- move occurs because `blk` has type `F`, which does not implement the `Copy` trait
LL | blk();
| ----- `blk` moved due to this call
LL | blk();
| ^^^ value used here after move
|
note: `FnOnce` closures can only be called once
--> $DIR/once-cant-call-twice-on-heap.rs:6:10
|
LL | fn foo<F:FnOnce()>(blk: F) {
| ^^^^^^^^ `F` is made to be an `FnOnce` closure here
LL | blk();
| ----- this value implements `FnOnce`, which causes it to be moved when called
```
Account for redundant `.clone()` calls in resulting suggestions:
```
error[E0507]: cannot move out of dereference of `S`
--> $DIR/needs-clone-through-deref.rs:15:18
|
LL | for _ in self.clone().into_iter() {}
| ^^^^^^^^^^^^ ----------- value moved due to this method call
| |
| move occurs because value has type `Vec<usize>`, which does not implement the `Copy` trait
|
note: `into_iter` takes ownership of the receiver `self`, which moves value
--> $SRC_DIR/core/src/iter/traits/collect.rs:LL:COL
help: you can `clone` the value and consume it, but this might not be your desired behavior
|
LL | for _ in <Vec<usize> as Clone>::clone(&self).into_iter() {}
| ++++++++++++++++++++++++++++++ ~
```
We use the presence of `&mut` values in a move error as a proxy for the user caring about side effects, so we don't emit a clone suggestion in that case:
```
error[E0505]: cannot move out of `s` because it is borrowed
--> $DIR/borrowck-overloaded-index-move-index.rs:53:7
|
LL | let mut s = "hello".to_string();
| ----- binding `s` declared here
LL | let rs = &mut s;
| ------ borrow of `s` occurs here
...
LL | f[s] = 10;
| ^ move out of `s` occurs here
...
LL | use_mut(rs);
| -- borrow later used here
```
We properly account for `foo += foo;` errors where we *don't* suggest `foo.clone() += foo;`, instead suggesting `foo += foo.clone();`.
---
Each commit can be reviewed in isolation. There are some "cleanup" commits, but kept them separate in order to show *why* specific changes were being made, and their effect on tests' output.
Fix#49693, CC #64167.
Avoid more NonNull-raw-NonNull roundtrips in Vec
r? the8472
The standard library in general has a lot of these round-trips from niched types to their raw innards and back. Such round-trips have overhead in debug builds since https://github.com/rust-lang/rust/pull/120594. I removed some such round-trips in that initial PR and I've been meaning to come back and hunt down more such examples (this is the last item on https://github.com/rust-lang/rust/issues/120848).
Account for trait/impl difference when suggesting changing argument from ref to mut ref
Do not ICE when encountering a lifetime error involving an argument with an immutable reference of a method that differs from the trait definition.
Fix#123414.
```
error[E0507]: cannot move out of `*x` which is behind a shared reference
--> $DIR/borrowck-fn-in-const-a.rs:6:16
|
LL | return *x
| ^^ move occurs because `*x` has type `String`, which does not implement the `Copy` trait
|
help: consider cloning the value if the performance cost is acceptable
|
LL - return *x
LL + return x.clone()
|
```
Do not ICE when encountering a lifetime error involving an argument with
an immutable reference of a method that differs from the trait definition.
Fix#123414.
Note that the caller chooses a type for type param
```
error[E0308]: mismatched types
--> $DIR/return-impl-trait.rs:23:5
|
LL | fn other_bounds<T>() -> T
| - -
| | |
| | expected `T` because of return type
| | help: consider using an impl return type: `impl Trait`
| expected this type parameter
...
LL | ()
| ^^ expected type parameter `T`, found `()`
|
= note: expected type parameter `T`
found unit type `()`
= note: the caller chooses the type of T which can be different from ()
```
Tried to see if "expected this type parameter" can be replaced, but that goes all the way to `rustc_infer` so seems not worth the effort and can affect other diagnostics.
Revives #112088 and #104755.
Split an item bounds and an item's super predicates
This is the moral equivalent of #107614, but instead for predicates this applies to **item bounds**. This PR splits out the item bounds (i.e. *all* predicates that are assumed to hold for the alias) from the item *super predicates*, which are the subset of item bounds which share the same self type as the alias.
## Why?
Much like #107614, there are places in the compiler where we *only* care about super-predicates, and considering predicates that possibly don't have anything to do with the alias is problematic. This includes things like closure signature inference (which is at its core searching for `Self: Fn(..)` style bounds), but also lints like `#[must_use]`, error reporting for aliases, computing type outlives predicates.
Even in cases where considering all of the `item_bounds` doesn't lead to bugs, unnecessarily considering irrelevant bounds does lead to a regression (#121121) due to doing extra work in the solver.
## Example 1 - Trait Aliases
This is best explored via an example:
```
type TAIT<T> = impl TraitAlias<T>;
trait TraitAlias<T> = A + B where T: C;
```
The item bounds list for `Tait<T>` will include:
* `Tait<T>: A`
* `Tait<T>: B`
* `T: C`
While `item_super_predicates` query will include just the first two predicates.
Side-note: You may wonder why `T: C` is included in the item bounds for `TAIT`? This is because when we elaborate `TraitAlias<T>`, we will also elaborate all the predicates on the trait.
## Example 2 - Associated Type Bounds
```
type TAIT<T> = impl Iterator<Item: A>;
```
The `item_bounds` list for `TAIT<T>` will include:
* `Tait<T>: Iterator`
* `<Tait<T> as Iterator>::Item: A`
But the `item_super_predicates` will just include the first bound, since that's the only bound that is relevant to the *alias* itself.
## So what
This leads to some diagnostics duplication just like #107614, but none of it will be user-facing. We only see it in the UI test suite because we explicitly disable diagnostic deduplication.
Regarding naming, I went with `super_predicates` kind of arbitrarily; this can easily be changed, but I'd consider better names as long as we don't block this PR in perpetuity.
Fix bad span for explicit lifetime suggestions
Fixes#121267
Current explicit lifetime suggestions are not showing correct spans for some lifetimes - e.g. elided lifetime generic parameters;
This should be done correctly regarding elided lifetime kind like the following code
43fdd4916d/compiler/rustc_resolve/src/late/diagnostics.rs (L3015-L3044)
Stabilize associated type bounds (RFC 2289)
This PR stabilizes associated type bounds, which were laid out in [RFC 2289]. This gives us a shorthand to express nested type bounds that would otherwise need to be expressed with nested `impl Trait` or broken into several `where` clauses.
### What are we stabilizing?
We're stabilizing the associated item bounds syntax, which allows us to put bounds in associated type position within other bounds, i.e. `T: Trait<Assoc: Bounds...>`. See [RFC 2289] for motivation.
In all position, the associated type bound syntax expands into a set of two (or more) bounds, and never anything else (see "How does this differ[...]" section for more info).
Associated type bounds are stabilized in four positions:
* **`where` clauses (and APIT)** - This is equivalent to breaking up the bound into two (or more) `where` clauses. For example, `where T: Trait<Assoc: Bound>` is equivalent to `where T: Trait, <T as Trait>::Assoc: Bound`.
* **Supertraits** - Similar to above, `trait CopyIterator: Iterator<Item: Copy> {}`. This is almost equivalent to breaking up the bound into two (or more) `where` clauses; however, the bound on the associated item is implied whenever the trait is used. See #112573/#112629.
* **Associated type item bounds** - This allows constraining the *nested* rigid projections that are associated with a trait's associated types. e.g. `trait Trait { type Assoc: Trait2<Assoc2: Copy>; }`.
* **opaque item bounds (RPIT, TAIT)** - This allows constraining associated types that are associated with the opaque without having to *name* the opaque. For example, `impl Iterator<Item: Copy>` defines an iterator whose item is `Copy` without having to actually name that item bound.
The latter three are not expressible in surface Rust (though for associated type item bounds, this will change in #120752, which I don't believe should block this PR), so this does represent a slight expansion of what can be expressed in trait bounds.
### How does this differ from the RFC?
Compared to the RFC, the current implementation *always* desugars associated type bounds to sets of `ty::Clause`s internally. Specifically, it does *not* introduce a position-dependent desugaring as laid out in [RFC 2289], and in particular:
* It does *not* desugar to anonymous associated items in associated type item bounds.
* It does *not* desugar to nested RPITs in RPIT bounds, nor nested TAITs in TAIT bounds.
This position-dependent desugaring laid out in the RFC existed simply to side-step limitations of the trait solver, which have mostly been fixed in #120584. The desugaring laid out in the RFC also added unnecessary complication to the design of the feature, and introduces its own limitations to, for example:
* Conditionally lowering to nested `impl Trait` in certain positions such as RPIT and TAIT means that we inherit the limitations of RPIT/TAIT, namely lack of support for higher-ranked opaque inference. See this code example: https://github.com/rust-lang/rust/pull/120752#issuecomment-1979412531.
* Introducing anonymous associated types makes traits no longer object safe, since anonymous associated types are not nameable, and all associated types must be named in `dyn` types.
This last point motivates why this PR is *not* stabilizing support for associated type bounds in `dyn` types, e.g, `dyn Assoc<Item: Bound>`. Why? Because `dyn` types need to have *concrete* types for all associated items, this would necessitate a distinct lowering for associated type bounds, which seems both complicated and unnecessary compared to just requiring the user to write `impl Trait` themselves. See #120719.
### Implementation history:
Limited to the significant behavioral changes and fixes and relevant PRs, ping me if I left something out--
* #57428
* #108063
* #110512
* #112629
* #120719
* #120584Closes#52662
[RFC 2289]: https://rust-lang.github.io/rfcs/2289-associated-type-bounds.html
Detect calls to .clone() on T: !Clone types on borrowck errors
When encountering a lifetime error on a type that *holds* a type that doesn't implement `Clone`, explore the item's body for potential calls to `.clone()` that are only cloning the reference `&T` instead of `T` because `T: !Clone`. If we find this, suggest `T: Clone`.
```
error[E0502]: cannot borrow `*list` as mutable because it is also borrowed as immutable
--> $DIR/clone-on-ref.rs:7:5
|
LL | for v in list.iter() {
| ---- immutable borrow occurs here
LL | cloned_items.push(v.clone())
| ------- this call doesn't do anything, the result is still `&T` because `T` doesn't implement `Clone`
LL | }
LL | list.push(T::default());
| ^^^^^^^^^^^^^^^^^^^^^^^ mutable borrow occurs here
LL |
LL | drop(cloned_items);
| ------------ immutable borrow later used here
|
help: consider further restricting this bound
|
LL | fn foo<T: Default + Clone>(list: &mut Vec<T>) {
| +++++++
```
```
error[E0505]: cannot move out of `x` because it is borrowed
--> $DIR/clone-on-ref.rs:23:10
|
LL | fn qux(x: A) {
| - binding `x` declared here
LL | let a = &x;
| -- borrow of `x` occurs here
LL | let b = a.clone();
| ------- this call doesn't do anything, the result is still `&A` because `A` doesn't implement `Clone`
LL | drop(x);
| ^ move out of `x` occurs here
LL |
LL | println!("{b:?}");
| ----- borrow later used here
|
help: consider annotating `A` with `#[derive(Clone)]`
|
LL + #[derive(Clone)]
LL | struct A;
|
```
Fix#48677.
This improves parallel rustc parallelism by avoiding the bottleneck after each individual `par_body_owners` (because it needs to wait for queries to finish, so if there is one long running one, a lot of cores will be idle while waiting for the single query).
Vec::try_with_capacity
Related to #91913
Implements try_with_capacity for `Vec`, `VecDeque`, and `String`. I can follow it up with more collections if desired.
`Vec::try_with_capacity()` is functionally equivalent to the current stable:
```rust
let mut v = Vec::new();
v.try_reserve_exact(n)?
```
However, `try_reserve` calls non-inlined `finish_grow`, which requires old and new `Layout`, and is designed to reallocate memory. There is benefit to using `try_with_capacity`, besides syntax convenience, because it generates much smaller code at the call site with a direct call to the allocator. There's codegen test included.
It's also a very desirable functionality for users of `no_global_oom_handling` (Rust-for-Linux), since it makes a very commonly used function available in that environment (`with_capacity` is used much more frequently than all `(try_)reserve(_exact)`).
When encountering trait bound errors that satisfy some heuristics that
tell us that the relevant trait for the user comes from the root
obligation and not the current obligation, we use the root predicate for
the main message.
This allows to talk about "X doesn't implement Pattern<'_>" over the
most specific case that just happened to fail, like "char doesn't
implement Fn(&mut char)" in
`tests/ui/traits/suggest-dereferences/root-obligation.rs`
The heuristics are:
- the type of the leaf predicate is (roughly) the same as the type
from the root predicate, as a proxy for "we care about the root"
- the leaf trait and the root trait are different, so as to avoid
talking about `&mut T: Trait` and instead remain talking about
`T: Trait` instead
- the root trait is not `Unsize`, as to avoid talking about it in
`tests/ui/coercion/coerce-issue-49593-box-never.rs`.
```
error[E0277]: the trait bound `&char: Pattern<'_>` is not satisfied
--> $DIR/root-obligation.rs:6:38
|
LL | .filter(|c| "aeiou".contains(c))
| -------- ^ the trait `Fn<(char,)>` is not implemented for `&char`, which is required by `&char: Pattern<'_>`
| |
| required by a bound introduced by this call
|
= note: required for `&char` to implement `FnOnce<(char,)>`
= note: required for `&char` to implement `Pattern<'_>`
note: required by a bound in `core::str::<impl str>::contains`
--> $SRC_DIR/core/src/str/mod.rs:LL:COL
help: consider dereferencing here
|
LL | .filter(|c| "aeiou".contains(*c))
| +
```
Fix#79359, fix#119983, fix#118779, cc #118415 (the suggestion needs
to change).
Do not provide a structured suggestion when the arguments don't match.
```
error[E0599]: no method named `test_mut` found for struct `Vec<{integer}>` in the current scope
--> $DIR/auto-ref-slice-plus-ref.rs:7:7
|
LL | a.test_mut();
| ^^^^^^^^
|
= help: items from traits can only be used if the trait is implemented and in scope
note: `MyIter` defines an item `test_mut`, perhaps you need to implement it
--> $DIR/auto-ref-slice-plus-ref.rs:14:1
|
LL | trait MyIter {
| ^^^^^^^^^^^^
help: there is a method `get_mut` with a similar name, but with different arguments
--> $SRC_DIR/core/src/slice/mod.rs:LL:COL
```
Consider methods beyond inherent ones when suggesting typos.
```
error[E0599]: no method named `owned` found for reference `&dyn Foo` in the current scope
--> $DIR/object-pointer-types.rs:11:7
|
LL | fn owned(self: Box<Self>);
| --------- the method might not be found because of this arbitrary self type
...
LL | x.owned();
| ^^^^^ help: there is a method with a similar name: `to_owned`
```
Fix#101013.
Only point out non-diverging arms for match suggestions
Fixes#121144
There is no reason to point at diverging arms, which will always coerce to whatever is the match block's evaluated type.
This also removes the suggestion from #106601, since as I pointed out in https://github.com/rust-lang/rust/issues/72634#issuecomment-1946210898 the added suggestion is not firing in the right cases, but instead only when one of the match arms already *actually* evaluates to `()`.
r? estebank
Fix msg for verbose suggestions with confusable capitalization
When encountering a verbose/multipart suggestion that has changes that are only caused by different capitalization of ASCII letters that have little differenciation, expand the message to highlight that fact (like we already do for inline suggestions).
The logic to do this was already present, but implemented incorrectly.
When encountering a verbose/multipart suggestion that has changes
that are only caused by different capitalization of ASCII letters that have
little differenciation, expand the message to highlight that fact (like we
already do for inline suggestions).
The logic to do this was already present, but implemented incorrectly.
Continue compilation after check_mod_type_wf errors
The ICEs fixed here were probably reachable through const eval gymnastics before, but now they are easily reachable without that, too.
The new errors are often bugfixes, where useful errors were missing, because they were reported after the early abort. In other cases sometimes they are just duplication of already emitted errors, which won't be user-visible due to deduplication.
fixes https://github.com/rust-lang/rust/issues/120860