the `rust.lld` config enables rustc's `CFG_USE_SELF_CONTAINED_LINKER` env var, and we:
- set the linker-flavor to use lld
- enable the self-contained linker
this makes the target use the rust-lld linker by default
Refactor Apple `target_abi`
This was bundled together with `Arch`, which complicated a few code paths and meant we had to do more string matching than necessary.
CC `@BlackHoleFox` as you've worked on the Apple target spec before
Related: Is there a reason why `Target`/`TargetOptions` use `StaticCow` for so many things, instead of an enum with defined values (and perhaps a catch-all case for custom target json files)? Tagging `@Nilstrieb,` as you might know?
Add `-lmingwex` second time in `mingw_libs`
Upcoming mingw-w64 releases will contain small math functions refactor which moved implementation around. As a result functions like `lgamma`
now depend on libraries in this order:
`libmingwex.a` -> `libmsvcrt.a` -> `libmingwex.a`.
Fixes#124221
Refactor float `Primitive`s to a separate `Float` type
Now there are 4 of them, it makes sense to refactor `F16`, `F32`, `F64` and `F128` out of `Primitive` and into a separate `Float` type (like integers already are). This allows patterns like `F16 | F32 | F64 | F128` to be simplified into `Float(_)`, and is consistent with `ty::FloatTy`.
As a side effect, this PR also makes the `Ty::primitive_size` method work with `f16` and `f128`.
Tracking issue: #116909
`@rustbot` label +F-f16_and_f128
rustc: Some small changes for the wasm32-wasip2 target
This commit has a few changes for the wasm32-wasip2 target. The first two are aimed at improving the compatibility of using `clang` as an external linker driver on this target. The default target to LLVM is updated to match the Rust target and additionally the `-fuse-ld=lld` argument is dropped since that otherwise interferes with clang's own linker detection. The only linker on wasm targets is LLD but on the wasip2 target a wrapper around LLD, `wasm-component-ld`, is used to drive the process and perform steps necessary for componentization.
The final commit changes the output of all objects on the wasip2 target to being PIC by default. This improves compatibilty with shared libaries but notably does not mean that there's a turnkey solution for shared libraries. The hope is that by having the standard libray work both with and without dynamic libraries will make experimentation easier.
This commit changes the new `wasm32-wasip2` target to being PIC by
default rather than the previous non-PIC by default. This change is
intended to make it easier for the standard library to be used in a
shared object in its precompiled form. This comes with a hypothetical
modest slowdown but it's expected that this is quite minor in most use
cases or otherwise wasm compilers and/or optimizing runtimes can elide
the cost.
LLVM has updated data layouts to specify `Fn32` on 64-bit ARM to avoid
C++ accidentally underaligning functions when trying to comply with
member function ABIs.
This should only affect Rust in cases where we had a similar bug (I
don't believe we have one), but our data layout must match to generate
code.
As a compatibility adaptatation, if LLVM is not version 19 yet, `Fn32`
gets voided from the data layout.
See llvm/llvm-project#90415
Set non-leaf frame pointers on Fuchsia targets
This is part of our work to enable shadow call stack sanitization on Fuchsia, see [this Fuchsia issue](https://g-issues.fuchsia.dev/issues/327643884).
r? ``@tmandry``
Change `SIGPIPE` ui from `#[unix_sigpipe = "..."]` to `-Zon-broken-pipe=...`
In the stabilization [attempt](https://github.com/rust-lang/rust/pull/120832) of `#[unix_sigpipe = "sig_dfl"]`, a concern was [raised ](https://github.com/rust-lang/rust/pull/120832#issuecomment-2007394609) related to using a language attribute for the feature: Long term, we want `fn lang_start()` to be definable by any crate, not just libstd. Having a special language attribute in that case becomes awkward.
So as a first step towards the next stabilization attempt, this PR changes the `#[unix_sigpipe = "..."]` attribute to a compiler flag `-Zon-broken-pipe=...` to remove that concern, since now the language is not "contaminated" by this feature.
Another point was [also raised](https://github.com/rust-lang/rust/pull/120832#issuecomment-1987023484), namely that the ui should not leak **how** it does things, but rather what the **end effect** is. The new flag uses the proposed naming. This is of course something that can be iterated on further before stabilization.
Tracking issue: https://github.com/rust-lang/rust/issues/97889
This commit changes the LLVM target of for the Rust `wasm32-wasip2`
target to `wasm32-wasip2` as well. LLVM does a bit of detection on the
target string to know when to call `wasm-component-ld` vs `wasm-ld` so
otherwise clang is invoking the wrong linker.
In the stabilization attempt of `#[unix_sigpipe = "sig_dfl"]`, a concern
was raised related to using a language attribute for the feature: Long
term, we want `fn lang_start()` to be definable by any crate, not just
libstd. Having a special language attribute in that case becomes
awkward.
So as a first step towards towards the next stabilization attempt, this
PR changes the `#[unix_sigpipe = "..."]` attribute to a compiler flag
`-Zon-broken-pipe=...` to remove that concern, since now the language
is not "contaminated" by this feature.
Another point was also raised, namely that the ui should not leak
**how** it does things, but rather what the **end effect** is. The new
flag uses the proposed naming. This is of course something that can be
iterated on further before stabilization.
Upcoming mingw-w64 releases will contain small math functions refactor which moved implementation around.
As a result functions like `lgamma`
now depend on libraries in this order:
`libmingwex.a` -> `libmsvcrt.a` -> `libmingwex.a`.
Fixes#124221
Introduce perma-unstable `wasm-c-abi` flag
Now that `wasm-bindgen` v0.2.88 supports the spec-compliant C ABI, the idea is to switch to that in a future version of Rust. In the meantime it would be good to let people test and play around with it.
This PR introduces a new perma-unstable `-Zwasm-c-abi` compiler flag, which switches to the new spec-compliant C ABI when targeting `wasm32-unknown-unknown`.
Alternatively, we could also stabilize this and then deprecate it when we switch. I will leave this to the Rust maintainers to decide.
This is a companion PR to #117918, but they could be merged independently.
MCP: https://github.com/rust-lang/compiler-team/issues/703
Tracking issue: https://github.com/rust-lang/rust/issues/122532
To the best of my ability I believe that this is no longer necessary. I
don't fully recall why this was first added but I believe it had to do
with symbols all being exported by default and this was required to undo
that. Regardless nowadays the default output of rustc seems suitable so
it seems best to keep wasm in line with other targets.
Linker flavors next steps: linker features
This is my understanding of the first step towards `@petrochenkov's` vision for the future of linker flavors, described in https://github.com/rust-lang/rust/pull/119906#issuecomment-1895693162 and the discussion that followed.
To summarize: having `Cc` and `Lld` embedded in linker flavors creates tension about naming, and a combinatorial explosion of flavors for each new linker feature we'd want to use. Linker features are an extension mechanism that is complementary to principal flavors, with benefits described in #119906.
The most immediate use of this flag would be to turn self-contained linking on and off via features instead of flavors. For example, `-Clinker-features=+/-lld` would toggle using lld instead of selecting a precise flavor, and would be "generic" and work cross-platform (whereas linker flavors are currently more tied to targets). Under this scheme, MCP510 is expected to be `-Clink-self-contained=+linker -Zlinker-features=+lld -Zunstable-options` (though for the time being, the original flags using lld-cc flavors still work).
I purposefully didn't add or document CLI support for `+/-cc`, as it would be a noop right now. I only expect that we'd initially want to stabilize `+/-lld` to begin with.
r? `@petrochenkov`
You had requested that minimal churn would be done to the 230 target specs and this does none yet: the linker features are inferred from the flavor since they're currently isomorphic. We of course expect this to change sooner rather than later.
In the future, we can allow targets to define linker features independently from their flavor, and remove the cc and lld components from the flavors to use the features instead, this actually doesn't need to block stabilization, as we discussed.
(Best reviewed per commit)
Re-enable `has_thread_local` for i686-msvc
A few years back, `has_thread_local` was disabled as a workaround for a compiler issue. While the exact cause was never tracked down, it was suspected to be caused by the compiler inlining a thread local access across a dylib boundary. This should be fixed now so let's try again.
While they're isomorphic, we can flip the lld component where
applicable, so that downstream doesn't have to check both the flavor and
the linker features.
They are a flexible complementary mechanism to linker flavors,
that also avoid the combinatorial explosion of mapping linking features
to actual linker flavors.
Reduce Size of `ModifierInfo`
I added `ModifierInfo` in #121940 and had used a `u64` for the `size` field even though the largest value it holds is `512`.
This PR changes the type of the `size` field to `u16`.
The actual ABI implication here is that in some cases the values
are required to be "consecutive", i.e. must either all be passed
in registers or all on stack (without padding).
Adjust the code to either use Uniform::new() or Uniform::consecutive()
depending on which behavior is needed.
Then, when lowering this in LLVM, skip the [1 x i128] to i128
simplification if is_consecutive is set. i128 is the only case
I'm aware of where this is problematic right now. If we find
other cases, we can extend this (either based on target information
or possibly just by not simplifying for is_consecutive entirely).
When passing a 16 (or higher) aligned struct by value on ppc64le,
it needs to be passed as an array of `i128` rather than an array
of `i64`. This will force the use of an even starting register.
For the case of a 16 byte struct with alignment 16 it is important
that `[1 x i128]` is used instead of `i128` -- apparently, the
latter will get treated similarly to `[2 x i64]`, not exhibiting
the correct ABI. Add a `force_array` flag to `Uniform` to support
this.
The relevant clang code can be found here:
fe2119a7b0/clang/lib/CodeGen/Targets/PPC.cpp (L878-L884)fe2119a7b0/clang/lib/CodeGen/Targets/PPC.cpp (L780-L784)
I think the corresponding psABI wording is this:
> Fixed size aggregates and unions passed by value are mapped to as
> many doublewords of the parameter save area as the value uses in
> memory. Aggregrates and unions are aligned according to their
> alignment requirements. This may result in doublewords being
> skipped for alignment.
In particular the last sentence.
Fixes https://github.com/rust-lang/rust/issues/122767.
Fix incorrect 'llvm_target' value used on watchOS target
## Issue
`xcodebuild -create-xcframework` command doesn't recognize static libraries that are built on "arm64_32-apple-watchos" target.
Here are steps to reproduce the issue on a Mac:
1. Install nightly toolchain `nightly-2024-03-27`. Needs this specific version, because newer nightly versions are broken on watchos target.
1. Create an empty library: `mkdir watchos-lib && cd watchos-lib && cargo init --lib`.
1. Add configuration `lib.crate-type=["staticlib"]` to Cargo.toml.
1. Build the library: `cargo +nightly-2024-03-27 build --release -Zbuild-std --target arm64_32-apple-watchos`
1. Run `xcodebuild -create-xcframework` to put the static library into a xcframework, which results in an error:
```
$ xcodebuild -create-xcframework -library target/arm64_32-apple-watchos/release/libwatchos_lib.a -output test.xcframework
error: unable to determine the platform for the given binary '.../watchos-lib/target/arm64_32-apple-watchos/release/libwatchos_lib.a'; check your deployment version settings
```
## Fix
The root cause of this error is `xcodebuild` couldn't read `LC_BUILD_VERSION` from the static library to determine the library's target platform. And the reason it's missing is that an incorrect `llvm_target` value is used in `arm64_32-apple-watchos` target. The expected value is `<arch>-apple-watchos<major>.<minor>.0`, i.e. "arm64_32-apple-watchos8.0.0".
The [.../apple/mod.rs](43f4f2a3b1/compiler/rustc_target/src/spec/base/apple/mod.rs (L321)) file contains functions that construct such string. There is an existing function `watchos_sim_llvm_target` which returns llvm target value for watchOS simulator. But there is none for watchOS device. This PR adds that missing function to align watchOS with other Apple platform targets.
To verify the fix, you can simply build a toolchain on this PR branch and repeat the steps above using the built local toolchain to verify the `xcodebuild -create-xcframework` command can create a xcframework successfully.
Furthermore, you can verify `LC_BUILD_VERSION` contains correct info by using the simple shell script below to print `LC_BUILD_VERSION` of the static library that's built on watchos target:
```shell
bin=target/arm64_32-apple-watchos/release/libwatchos_lib.a
file=$(ar -t "$bin" | grep -E '\.o$' | head -n 1)
ar -x "$bin" "$file"
vtool -show-build-version "$file"
```
Here is an example output from my machine:
```
watchos_rust-495d6aaf3bccc08d.watchos_rust.35ba42bf9255ca9d-cgu.0.rcgu.o:
Load command 1
cmd LC_BUILD_VERSION
cmdsize 24
platform WATCHOS
minos 8.0
sdk n/a
ntools 0
```
MSVC targets should use COFF as their archive format
While adding support for Arm64EC I ran into an issue where the standard library's rlib was missing the "EC Symbol Table" which is required for the MSVC linker to find import library symbols (generated by Rust's `raw-dylib` feature) when building for EC.
The root cause of the issue is that LLVM only generated symbol tables (including the EC Symbol Table) if the `ArchiveKind` is `COFF`, but the MSVC targets didn't set their archive format, so it was defaulting to GNU.
Fix target-cpu fpu features on Arm R/M-profile
This is achieved by converting `+<fpu>,-d32,{,-fp64}` to `+<fpu>d16{,sp}`.
By using a single additive feature that captures `d16` vs `d32` and `sp` vs
`dp`, we prevent `-<feature>` from overriding `-C target-cpu` at build time.
Remove extraneous `-fp16` from `armv7r` targets, as this is not included in
`vfp3` anyway, but was preventing `fp16` from being enabled by e.g.,
`-C target-cpu=cortex-r7`, which does support `fp16`.
Add aarch64-apple-visionos and aarch64-apple-visionos-sim tier 3 targets
Introduces `aarch64-apple-visionos` and `aarch64-apple-visionos-sim` as tier 3 targets. This allows native development for the Apple Vision Pro's visionOS platform.
This work has been tracked in https://github.com/rust-lang/compiler-team/issues/642. There is a corresponding `libc` change https://github.com/rust-lang/libc/pull/3568 that is not required for merge.
Ideally we would be able to incorporate [this change](https://github.com/gimli-rs/object/pull/626) to the `object` crate, but the author has stated that a release will not be cut for quite a while. Therefore, the two locations that would reference the xrOS constant from `object` are hardcoded to their MachO values of 11 and 12, accompanied by TODOs to mark the code as needing change. I am open to suggestions on what to do here to get this checked in.
# Tier 3 Target Policy
At this tier, the Rust project provides no official support for a target, so we place minimal requirements on the introduction of targets.
> A tier 3 target must have a designated developer or developers (the "target maintainers") on record to be CCed when issues arise regarding the target. (The mechanism to track and CC such developers may evolve over time.)
See [src/doc/rustc/src/platform-support/apple-visionos.md](e88379034a/src/doc/rustc/src/platform-support/apple-visionos.md)
> Targets must use naming consistent with any existing targets; for instance, a target for the same CPU or OS as an existing Rust target should use the same name for that CPU or OS. Targets should normally use the same names and naming conventions as used elsewhere in the broader ecosystem beyond Rust (such as in other toolchains), unless they have a very good reason to diverge. Changing the name of a target can be highly disruptive, especially once the target reaches a higher tier, so getting the name right is important even for a tier 3 target.
> * Target names should not introduce undue confusion or ambiguity unless absolutely necessary to maintain ecosystem compatibility. For example, if the name of the target makes people extremely likely to form incorrect beliefs about what it targets, the name should be changed or augmented to disambiguate it.
> * If possible, use only letters, numbers, dashes and underscores for the name. Periods (.) are known to cause issues in Cargo.
This naming scheme matches `$ARCH-$VENDOR-$OS-$ABI` which is matches the iOS Apple Silicon simulator (`aarch64-apple-ios-sim`) and other Apple targets.
> Tier 3 targets may have unusual requirements to build or use, but must not
create legal issues or impose onerous legal terms for the Rust project or for
Rust developers or users.
> - The target must not introduce license incompatibilities.
> - Anything added to the Rust repository must be under the standard Rust license (`MIT OR Apache-2.0`).
> - The target must not cause the Rust tools or libraries built for any other host (even when supporting cross-compilation to the target) to depend on any new dependency less permissive than the Rust licensing policy. This applies whether the dependency is a Rust crate that would require adding new license exceptions (as specified by the `tidy` tool in the rust-lang/rust repository), or whether the dependency is a native library or binary. In other words, the introduction of the target must not cause a user installing or running a version of Rust or the Rust tools to besubject to any new license requirements.
> - Compiling, linking, and emitting functional binaries, libraries, or other code for the target (whether hosted on the target itself or cross-compiling from another target) must not depend on proprietary (non-FOSS) libraries. Host tools built for the target itself may depend on the ordinary runtime libraries supplied by the platform and commonly used by other applications built for the target, but those libraries must not be required for code generation for the target; cross-compilation to the target must not require such libraries at all. For instance, `rustc` built for the target may depend on a common proprietary C runtime library or console output library, but must not depend on a proprietary code generation library or code optimization library. Rust's license permits such combinations, but the Rust project has no interest in maintaining such combinations within the scope of Rust itself, even at tier 3.
> - "onerous" here is an intentionally subjective term. At a minimum, "onerous" legal/licensing terms include but are *not* limited to: non-disclosure requirements, non-compete requirements, contributor license agreements (CLAs) or equivalent, "non-commercial"/"research-only"/etc terms, requirements conditional on the employer or employment of any particular Rust developers, revocable terms, any requirements that create liability for the Rust project or its developers or users, or any requirements that adversely affect the livelihood or prospects of the Rust project or its developers or users.
This contribution is fully available under the standard Rust license with no additional legal restrictions whatsoever. This PR does not introduce any new dependency less permissive than the Rust license policy.
The new targets do not depend on proprietary libraries.
> Tier 3 targets should attempt to implement as much of the standard libraries as possible and appropriate (core for most targets, alloc for targets that can support dynamic memory allocation, std for targets with an operating system or equivalent layer of system-provided functionality), but may leave some code unimplemented (either unavailable or stubbed out as appropriate), whether because the target makes it impossible to implement or challenging to implement. The authors of pull requests are not obligated to avoid calling any portions of the standard library on the basis of a tier 3 target not implementing those portions.
This new target mirrors the standard library for watchOS and iOS, with minor divergences.
> The target must provide documentation for the Rust community explaining how to build for the target, using cross-compilation if possible. If the target supports running binaries, or running tests (even if they do not pass), the documentation must explain how to run such binaries or tests for the target, using emulation if possible or dedicated hardware if necessary.
Documentation is provided in [src/doc/rustc/src/platform-support/apple-visionos.md](e88379034a/src/doc/rustc/src/platform-support/apple-visionos.md)
> Neither this policy nor any decisions made regarding targets shall create any binding agreement or estoppel by any party. If any member of an approving Rust team serves as one of the maintainers of a target, or has any legal or employment requirement (explicit or implicit) that might affect their decisions regarding a target, they must recuse themselves from any approval decisions regarding the target's tier status, though they may otherwise participate in discussions.
> * This requirement does not prevent part or all of this policy from being cited in an explicit contract or work agreement (e.g. to implement or maintain support for a target). This requirement exists to ensure that a developer or team responsible for reviewing and approving a target does not face any legal threats or obligations that would prevent them from freely exercising their judgment in such approval, even if such judgment involves subjective matters or goes beyond the letter of these requirements.
> Tier 3 targets must not impose burden on the authors of pull requests, or other developers in the community, to maintain the target. In particular, do not post comments (automated or manual) on a PR that derail or suggest a block on the PR based on a tier 3 target. Do not send automated messages or notifications (via any medium, including via `@)` to a PR author or others involved with a PR regarding a tier 3 target, unless they have opted into such messages.
> * Backlinks such as those generated by the issue/PR tracker when linking to an issue or PR are not considered a violation of this policy, within reason. However, such messages (even on a separate repository) must not generate notifications to anyone involved with a PR who has not requested such notifications.
> Patches adding or updating tier 3 targets must not break any existing tier 2 or tier 1 target, and must not knowingly break another tier 3 target without approval of either the compiler team or the maintainers of the other tier 3 target.
> * In particular, this may come up when working on closely related targets, such as variations of the same architecture with different features. Avoid introducing unconditional uses of features that another variation of the target may not have; use conditional compilation or runtime detection, as appropriate, to let each target run code supported by that target.
I acknowledge these requirements and intend to ensure that they are met.
This target does not touch any existing tier 2 or tier 1 targets and should not break any other targets.
This is achieved by converting `+<fpu>,-d32,{,-fp64}` to `+<fpu>d16{,sp}`.
By using a single additive feature that captures `d16` vs `d32` and `sp` vs
`dp`, we prevent `-<feature>` from overriding `-C target-cpu` at build time.
Remove extraneous `-fp16` from `armv7r` targets, as this is not included in
`vfp3` anyway, but was preventing `fp16` from being enabled by e.g.,
`-C target-cpu=cortex-r7`, which does support `fp16`.
The expected value is "<arch>-apple-watchos<major>.<minor>.0", i.e.
"arm64_32-apple-watchos8.0.0".
compiler/rustc_target/src/spec/base/apple/mod.rs contains functions that
construct such string. There is an existing function
`watchos_sim_llvm_target` which returns llvm target value for watchOS
simulator. But there is none for watchOS device. This commit adds that
missing function to align watchOS with other Apple platform targets.
Check `x86_64` size assertions on `aarch64`, too
(Context: https://rust-lang.zulipchat.com/#narrow/stream/131828-t-compiler/topic/Checking.20size.20assertions.20on.20aarch64.3F)
Currently the compiler has around 30 sets of `static_assert_size!` for various size-critical data structures (e.g. various IR nodes), guarded by `#[cfg(all(target_arch = "x86_64", target_pointer_width = "64"))]`.
(Presumably this cfg avoids having to maintain separate size values for 32-bit targets and unusual 64-bit targets. Apparently it may have been necessary before the i128/u128 alignment changes, too.)
This is slightly incovenient for people on aarch64 workstations (e.g. Macs), because the assertions normally aren't checked until we push to a PR. So this PR adds `aarch64` to the `#[cfg(..)]` guarding all of those assertions in the compiler.
---
Implemented with a simple find/replace. Verified by manually inspecting each `static_assert_size!` in `compiler/`, and checking that either the replacement succeeded, or adding aarch64 wouldn't have been appropriate.