Implement `unsigned_signed_diff`
<!--
If this PR is related to an unstable feature or an otherwise tracked effort,
please link to the relevant tracking issue here. If you don't know of a related
tracking issue or there are none, feel free to ignore this.
This PR will get automatically assigned to a reviewer. In case you would like
a specific user to review your work, you can assign it to them by using
r? <reviewer name>
-->
Implements https://github.com/rust-lang/rust/issues/126041
Import `c_void` rather than using the full path
Follow up to #128092. As requested, this imports `c_void` in more places. I also fixed up some imports to use `core` for core types instead of `crate`. While that is not strictly necessary, I think ideally things in `sys/pal` should only depend on itself or core so that the code is less spaghetti. We're far away from that ideal at the moment but I can at least try to slowly move in that direction.
Also this forbids `unsafe_op_in_unsafe_fn` for library/std/src/sys/pal/windows by fixing up the remaining unsafe bits that are just punting their unsafe requirements onto the caller of the `unsafe` function (or definition macro).
<!--
r? workingjubilee
-->
Gate `AsyncFn*` under `async_closure` feature
T-lang has not come to a consensus on the naming of async closure callable bounds, and as part of allowing the async closures RFC merge, we agreed to place `AsyncFn` under the same gate as `async Fn` so that these syntaxes can be evaluated in parallel.
See https://github.com/rust-lang/rfcs/pull/3668#issuecomment-2246435537
r? oli-obk
Replace some `mem::forget`'s with `ManuallyDrop`
> but I would like to see a larger effort to replace all uses of `mem::forget`.
_Originally posted by `@saethlin` in https://github.com/rust-lang/rust/issues/127584#issuecomment-2226087767_
So,
r? `@saethlin`
Sorry, I have finished writing all of this before I got your response.
Fix build failure on vxworks #127084
PR to address issue #127084 .
1. Skip `reset_segpipe` for vxworks
2. Return unimplemented error for vxworks from settimes and lchown
3. Temporarily skip dirfd for vxworks
4. Add allow unused unsafe on read_at and write_at functions in unix/fs.rs
5. Using cfg disable ON_BROKEN_PIPE_FLAG_USED and on_broken_pipe_flag_used() for vxworks
6. Remove old crate::syscommon:🧵:min_stack() reference from process_vxworks.rs and update to set stack size of rtpthread
Thank you.
Add edge-case examples to `{count,leading,trailing}_{ones,zeros}` methods
Some architectures (i386) do not define a "count leading zeros" instruction, they define a "find first set bit" instruction (`bsf`) whose result is undefined when given zero (ie none of the bits are set). Of this family of bitwise operations, I always forget which of these things is potentially undefined for zero, and I'm also not 100% sure that Rust provides a hard guarantee for the results of these methods when given zero. So I figured there are others who have these same uncertainties, and it would be good to resolve them and answer the question via extending these doc examples/tests.
See https://en.wikipedia.org/wiki/Find_first_set#Hardware_support for more info on i386 and `bsf` on zero.
Fix return type of FileAttr methods on AIX target
At some point it seems `SystemTime::new` changed from returning `SystemTime` to `io::Result<SystemTime>`. This seems to have been addressed on other platforms, but was never changed for AIX.
This was caught by running
```
python3 x.py build --host x86_64-unknown-linux-gnu --target powerpc64-ibm-aix
```
Remove wrapper functions from c.rs
I'd like for the windows `c.rs` just to contain the basic platform definitions and not anything higher level unless absolutely necessary. So this removes some wrapper functions that weren't really necessary in any case. The functions are only used in a few places which themselves are relatively thin wrappers. The "interesting" bit is that we had an `AlertableIoFn` that abstracted over `ReadFileEx` and `WriteFileEx`. I've replaced this with a closure.
Also I removed an `#[allow(unsafe_op_in_unsafe_fn)]` while I was moving things around.
Remove generic lifetime parameter of trait `Pattern`
Use a GAT for `Searcher` associated type because this trait is always implemented for every lifetime anyway.
cc #27721
Update tracking issue for `const_binary_heap_new_in`
This PR updates the tracking issue of `const_binary_heap_new_in` feature:
- Old issue: #112353
- New issue: #125961
At some point it seems `SystemTime::new` changed from returning `SystemTime` to `io::Result<SystemTime>`. This seems to have been addressed on other platforms, but was never changed for AIX.
This was caught by running
```
python3 x.py build --host x86_64-unknown-linux-gnu --target powerpc64-ibm-aix
```
std: Unsafe-wrap actually-universal platform code
Every platform compiles the unsafe parts of this code, so just clean this up. Almost entirely a whitespace diff.
treat `&raw (const|mut) UNSAFE_STATIC` implied deref as safe
Fixesrust-lang/rust#125833
As reported in that and related issues, `static mut STATIC_MUT: T` is very often used in embedded code, and is in many ways equivalent to `static STATIC_CELL: SyncUnsafeCell<T>`. The Rust expression of `&raw mut STATIC_MUT` and `SyncUnsafeCell::get(&STATIC_CELL)` are approximately equal, and both evaluate to `*mut T`. The library function is safe because it has *declared itself* to be safe. However, the raw ref operator is unsafe because all uses of `static mut` are considered unsafe, even though the static's value is not used by this expression (unlike, for example, `&STATIC_MUT`).
We can fix this unnatural difference by simply adding the proper exclusion for the safety check inside the THIR unsafeck, so that we do not declare it unsafe if it is not.
While the primary concern here is `static mut`, this change is made for all instances of an "unsafe static", which includes a static declared inside `extern "abi" {}`. Hypothetically, we could go as far as generalizing this to all instances of `&raw (const|mut) *ptr`, but today we do not, as we have not actually considered the range of possible expressions that use a similar encoding. We do not even extend this to thread-local equivalents, because they have less clear semantics.
Start using `#[diagnostic::do_not_recommend]` in the standard library
This commit starts using `#[diagnostic::do_not_recommend]` in the standard library to improve some error messages. In this case we just hide a certain nightly only impl as suggested in #121521
The result in not perfect yet, but at least the `Yeet` suggestion is not shown anymore. I would consider that as a minor improvement.
Clean up warnings + `unsafe_op_in_unsafe_fn` when building std for armv6k-nintendo-3ds
See #127747
ping `@AzureMarker` `@Meziu`
I could only find one instance needing an extra `unsafe` that was not also shared with many other `unix` targets (presumably these will get covered in larger sweeping changes, I didn't want to introduce churn that would potentially conflict with those). The one codepath I found is shared with `vita` however, so also pinging `@nikarh` `@pheki` `@zetanumbers` just to make sure they're aware of this change.
Also removed one unused import from `process_unsupported` which should simply fix the warning for any target that uses it.
Add missing try_new_uninit_slice_in and try_new_zeroed_slice_in
The methods for fallible slice allocation in a given allocator were missing from `Box`, which was an oversight according to https://github.com/rust-lang/wg-allocators/issues/130
This PR adds them as `try_new_uninit_slice_in` and `try_new_zeroed_slice_in`. I simply copy-pasted the implementations of `try_new_uninit_slice` and `try_new_zeroed_slice` and adusted doc comment, typings, and the allocator it uses internally.
Also adds missing punctuation to the doc comments of `try_new_uninit_slice` and `try_new_zeroed_slice`.
Related issue is https://github.com/rust-lang/rust/issues/32838 (Allocator traits and std::heap) *I think*. Also relevant is https://github.com/rust-lang/rust/issues/63291, but I did not add the corresponding `#[unstable]` proc macro, since `try_new_uninit_slice` and `try_new_zeroed_slice` are also not annotated with it.
This commit starts using `#[diagnostic::do_not_recommend]` in the
standard library to improve some error messages. In this case we just
hide a certain nightly only impl as suggested in #121521
Deal with invalid UTF-8 from `gai_strerror`
When the system is using a non-UTF-8 locale, the value will indeed not be UTF-8. That sucks for everyone involved, but is no reason for panic. We can "handle" this gracefully by just using from lossy, replacing the invalid UTF-8 with � and keeping the accidentally valid UTF-8. Good luck when debugging, but at least it's not a crash.
We already do this for `strerror_r`.
fixes#127563
When the system is using a non-UTF-8 locale, the value will indeed not
be UTF-8. That sucks for everyone involved, but is no reason for panic.
We can "handle" this gracefully by just using from lossy, replacing the
invalid UTF-8 with the ? and keeping the accidentally valid UTF-8.
Good luck when debugging, but at least it's not a crash.
We already do this for `strerror_r`.
Forbid borrows and unsized types from being used as the type of a const generic under `adt_const_params`
Fixes#112219Fixes#112124Fixes#112125
### Motivation
Currently the `adt_const_params` feature allows writing `Foo<const N: [u8]>` this is entirely useless as it is not possible to write an expression which evaluates to a type that is not `Sized`. In order to actually use unsized types in const generics they are typically written as `const N: &[u8]` which *is* possible to provide a value of.
Unfortunately allowing the types of const parameters to contain references is non trivial (#120961) as it introduces a number of difficult questions about how equality of references in the type system should behave. References in the types of const generics is largely only useful for using unsized types in const generics.
This PR introduces a new feature gate `unsized_const_parameters` and moves support for `const N: [u8]` and `const N: &...` from `adt_const_params` into it. The goal here hopefully is to experiment with allowing `const N: [u8]` to work without references and then eventually completely forbid references in const generics.
Splitting this out into a new feature gate means that stabilization of `adt_const_params` does not have to resolve#120961 which is the only remaining "big" blocker for the feature. Remaining issues after this are a few ICEs and naming bikeshed for `ConstParamTy`.
### Implementation
The implementation is slightly subtle here as we would like to ensure that a stabilization of `adt_const_params` is forwards compatible with any outcome of `unsized_const_parameters`. This is inherently tricky as we do not support unstable trait implementations and we determine whether a type is valid as the type of a const parameter via a trait bound.
There are a few constraints here:
- We would like to *allow for the possibility* of adding a `Sized` supertrait to `ConstParamTy` in the event that we wind up opting to not support unsized types and instead requiring people to write the 'sized version', e.g. `const N: [u8; M]` instead of `const N: [u8]`.
- Crates should be able to enable `unsized_const_parameters` and write trait implementations of `ConstParamTy` for `!Sized` types without downstream crates that only enable `adt_const_params` being able to observe this (required for std to be able to `impl<T> ConstParamTy for [T]`
Ultimately the way this is accomplished is via having two traits (sad), `ConstParamTy` and `UnsizedConstParamTy`. Depending on whether `unsized_const_parameters` is enabled or not we change which trait is used to check whether a type is allowed to be a const parameter.
Long term (when stabilizing `UnsizedConstParamTy`) it should be possible to completely merge these traits (and derive macros), only having a single `trait ConstParamTy` and `macro ConstParamTy`.
Under `adt_const_params` it is now illegal to directly refer to `ConstParamTy` it is only used as an internal impl detail by `derive(ConstParamTy)` and checking const parameters are well formed. This is necessary in order to ensure forwards compatibility with all possible future directions for `feature(unsized_const_parameters)`.
Generally the intuition here should be that `ConstParamTy` is the stable trait that everything uses, and `UnsizedConstParamTy` is that plus unstable implementations (well, I suppose `ConstParamTy` isn't stable yet :P).
Windows: move BSD socket shims to netc
On Windows we need to alter a few types so that they can be used in the cross-platform socket code. Currently these alterations are spread throughout the `c` module with some more in the `netc` module.
Let's gather all our BSD compatibility shims in the `netc` module so it's all in one place and easier to discover.