Match ergonomics 2024: align implementation with RFC
- Remove eat-two-layers (`ref_pat_everywhere`)
- Consolidate `mut_preserve_binding_mode_2024` into `ref_pat_eat_one_layer_2024`
- `&mut` no longer peels off `&`
- Apply "no `ref mut` behind `&`" rule on all editions with `ref_pat_eat_one_layer_2024`
- Require `mut_ref` feature gate for all mutable by-reference bindings
r? ``@Nadrieril``
cc https://github.com/rust-lang/rust/issues/123076
``@rustbot`` label A-edition-2024 A-patterns
Turn remaining non-structural-const-in-pattern lints into hard errors
This completes the implementation of https://github.com/rust-lang/rust/issues/120362 by turning our remaining future-compat lints into hard errors: indirect_structural_match and pointer_structural_match.
They have been future-compat lints for a while (indirect_structural_match for many years, pointer_structural_match since Rust 1.75 (released Dec 28, 2023)), and have shown up in dependency breakage reports since Rust 1.78 (just released on May 2, 2024). I don't expect a lot of code will still depend on them, but we will of course do a crater run.
A lot of cleanup is now possible in const_to_pat, but that is deferred to a later PR.
Fixes https://github.com/rust-lang/rust/issues/70861
Unfortunately, we can't always offer a machine-applicable suggestion when there are subpatterns from macro expansion.
Co-Authored-By: Guillaume Boisseau <Nadrieril@users.noreply.github.com>
```
error[E0382]: use of moved value: `t`
--> $DIR/use_of_moved_value_copy_suggestions.rs:7:9
|
LL | fn duplicate_t<T>(t: T) -> (T, T) {
| - move occurs because `t` has type `T`, which does not implement the `Copy` trait
...
LL | (t, t)
| - ^ value used here after move
| |
| value moved here
|
help: if `T` implemented `Clone`, you could clone the value
--> $DIR/use_of_moved_value_copy_suggestions.rs:4:16
|
LL | fn duplicate_t<T>(t: T) -> (T, T) {
| ^ consider constraining this type parameter with `Clone`
...
LL | (t, t)
| - you could clone this value
help: consider restricting type parameter `T`
|
LL | fn duplicate_t<T: Copy>(t: T) -> (T, T) {
| ++++++
```
The `help` is new. On ADTs, we also extend the output with span labels:
```
error[E0507]: cannot move out of static item `FOO`
--> $DIR/issue-17718-static-move.rs:6:14
|
LL | let _a = FOO;
| ^^^ move occurs because `FOO` has type `Foo`, which does not implement the `Copy` trait
|
note: if `Foo` implemented `Clone`, you could clone the value
--> $DIR/issue-17718-static-move.rs:1:1
|
LL | struct Foo;
| ^^^^^^^^^^ consider implementing `Clone` for this type
...
LL | let _a = FOO;
| --- you could clone this value
help: consider borrowing here
|
LL | let _a = &FOO;
| +
```
This handles using deref patterns to choose the correct match arm. This
does not handle bindings or guards.
Co-authored-by: Deadbeef <ent3rm4n@gmail.com>
For ref pattern in func param, the mutability suggestion has to apply to the binding.
For example: `fn foo(&x: &i32)` -> `fn foo(&(mut x): &i32)`
fixes#122415
never patterns: suggest `!` patterns on non-exhaustive matches
When a match is non-exhaustive we now suggest never patterns whenever it makes sense.
r? ``@compiler-errors``
Detect calls to .clone() on T: !Clone types on borrowck errors
When encountering a lifetime error on a type that *holds* a type that doesn't implement `Clone`, explore the item's body for potential calls to `.clone()` that are only cloning the reference `&T` instead of `T` because `T: !Clone`. If we find this, suggest `T: Clone`.
```
error[E0502]: cannot borrow `*list` as mutable because it is also borrowed as immutable
--> $DIR/clone-on-ref.rs:7:5
|
LL | for v in list.iter() {
| ---- immutable borrow occurs here
LL | cloned_items.push(v.clone())
| ------- this call doesn't do anything, the result is still `&T` because `T` doesn't implement `Clone`
LL | }
LL | list.push(T::default());
| ^^^^^^^^^^^^^^^^^^^^^^^ mutable borrow occurs here
LL |
LL | drop(cloned_items);
| ------------ immutable borrow later used here
|
help: consider further restricting this bound
|
LL | fn foo<T: Default + Clone>(list: &mut Vec<T>) {
| +++++++
```
```
error[E0505]: cannot move out of `x` because it is borrowed
--> $DIR/clone-on-ref.rs:23:10
|
LL | fn qux(x: A) {
| - binding `x` declared here
LL | let a = &x;
| -- borrow of `x` occurs here
LL | let b = a.clone();
| ------- this call doesn't do anything, the result is still `&A` because `A` doesn't implement `Clone`
LL | drop(x);
| ^ move out of `x` occurs here
LL |
LL | println!("{b:?}");
| ----- borrow later used here
|
help: consider annotating `A` with `#[derive(Clone)]`
|
LL + #[derive(Clone)]
LL | struct A;
|
```
Fix#48677.
match lowering: don't collect test alternatives ahead of time
I'm very happy with this one. Before this, when sorting candidates into the possible test branches, we manually computed `usize` indices to determine in which branch each candidate goes. To make this work we had a first pass that collected the possible alternatives we'd have to deal with, and a second pass that actually sorts the candidates.
In this PR, I replace `usize` indices with a dedicated enum. This makes `sort_candidates` easier to follow, and we don't need the first pass anymore.
r? ``@matthewjasper``
Add new `pattern_complexity` attribute to add possibility to limit and check recursion in pattern matching
Needed for https://github.com/rust-lang/rust-analyzer/issues/9528.
This PR adds a new attribute only available when running rust testsuite called `pattern_complexity` which allows to set the maximum recursion for the pattern matching. It is quite useful to ensure the complexity doesn't grow, like in `tests/ui/pattern/usefulness/issue-118437-exponential-time-on-diagonal-match.rs`.
r? `@Nadrieril`