Allow lint passes to be bound by `TyCtxt`
This will allow storing things like `Ty<'tcx>` inside late lint passes. It's already possible to store various id types so they're already implicitly bound to a specific `TyCtxt`.
r? rust-lang/compiler
Update `SessionDiagnostic::into_diagnostic` to take `Handler` instead of `ParseSess`
Suggested by the team in [this Zulip Topic](https://rust-lang.zulipchat.com/#narrow/stream/336883-i18n/topic/.23100717.20SessionDiagnostic.20on.20Handler).
`Handler` already has almost all the capabilities of `ParseSess` when it comes to diagnostic emission, in this migration we only needed to add the ability to access `source_map` from the emitter in order to get a `Snippet` and the `start_point`. Not sure if adding these two methods [`span_to_snippet_from_emitter` and `span_start_point_from_emitter`] is the best way to address this gap.
P.S. If this goes in the right direction, then we probably may want to move `SessionDiagnostic` to `rustc_errors` and rename it to `DiagnosticHandler` or something similar.
r? `@davidtwco`
r? `@compiler-errors`
`BindingAnnotation` refactor
* `ast::BindingMode` is deleted and replaced with `hir::BindingAnnotation` (which is moved to `ast`)
* `BindingAnnotation` is changed from an enum to a tuple struct e.g. `BindingAnnotation(ByRef::No, Mutability::Mut)`
* Associated constants added for convenience `BindingAnnotation::{NONE, REF, MUT, REF_MUT}`
One goal is to make it more clear that `BindingAnnotation` merely represents syntax `ref mut` and not the actual binding mode. This was especially confusing since we had `ast::BindingMode`->`hir::BindingAnnotation`->`thir::BindingMode`.
I wish there were more symmetry between `ByRef` and `Mutability` (variant) naming (maybe `Mutable::Yes`?), and I also don't love how long the name `BindingAnnotation` is, but this seems like the best compromise. Ideas welcome.
Suggested by the team in this Zulip Topic https://rust-lang.zulipchat.com/#narrow/stream/336883-i18n/topic/.23100717.20SessionDiagnostic.20on.20Handler
Handler already has almost all the capabilities of ParseSess when it comes to diagnostic emission, in this migration we only needed to add the ability to access source_map from the emitter in order to get a Snippet and the start_point. Not sure if this is the best way to address this gap
Add warning against unexpected --cfg with --check-cfg
This PR adds a warning when an unexpected `--cfg` is specified but not in the specified list of `--check-cfg`.
This is the follow-up PR I mentioned in https://github.com/rust-lang/rust/pull/99519.
r? `@petrochenkov`
Uplift the `let_underscore` lints from clippy into rustc.
This PR resolves#97241.
This PR adds three lints from clippy--`let_underscore_drop`, `let_underscore_lock`, and `let_underscore_must_use`, which are meant to capture likely-incorrect uses of `let _ = ...` bindings (in particular, doing this on a type with a non-trivial `Drop` causes the `Drop` to occur immediately, instead of at the end of the scope. For a type like `MutexGuard`, this effectively releases the lock immediately, which is almost certainly the wrong behavior)
In porting the lints from clippy I had to copy over a bunch of utility functions from `clippy_util` that these lints also relied upon. Is that the right approach?
Note that I've set the `must_use` and `drop` lints to Allow by default and set `lock` to Deny by default (this matches the same settings that clippy has). In talking with `@estebank` he informed me to do a Crater run (I am not sure what type of Crater run to request here--I think it's just "check only"?)
On the linked issue, there's some discussion about using `must_use` and `Drop` together as a heuristic for when to warn--I did not implement this yet.
r? `@estebank`
Add `special_module_name` lint
Declaring `lib` as a module is one of the most common beginner mistakes when trying to setup a binary and library target in the same crate. `special_module_name` lints against it, as well as `mod main;`
```
warning: found module declaration for main.rs
--> $DIR/special_module_name.rs:4:1
|
LL | mod main;
| ^^^^^^^^^
|
= note: a binary crate cannot be used as library
warning: found module declaration for lib.rs
--> $DIR/special_module_name.rs:1:1
|
LL | mod lib;
| ^^^^^^^^
|
= note: `#[warn(special_module_name)]` on by default
= note: lib.rs is the root of this crate's library target
= help: to refer to it from other targets, use the library's name as the path
```
Note that the help message is not the best in that it doesn't provide an example of an import path (`the_actual_crate_name::`), and doesn't check whether the current file is part of a library/binary target to provide more specific error messages. I'm not sure where this lint would have to be run to access that information.
Fix a bunch of typo
This PR will fix some typos detected by [typos].
I only picked the ones I was sure were spelling errors to fix, mostly in
the comments.
[typos]: https://github.com/crate-ci/typos
Functions annotated with `#[rustc_lint_diagnostics]` are used by the
diagnostic migration lints to know when to lint, but functions that are
annotated with this attribute shouldn't themselves be linted.
Signed-off-by: David Wood <david.wood@huawei.com>
This PR will fix some typos detected by [typos].
I only picked the ones I was sure were spelling errors to fix, mostly in
the comments.
[typos]: https://github.com/crate-ci/typos
Strengthen invalid_value lint to forbid uninit primitives, adjust docs to say that's UB
For context: https://github.com/rust-lang/rust/issues/66151#issuecomment-1174477404=
This does not make it a FCW, but it does explicitly state in the docs that uninit integers are UB.
This also doesn't affect any runtime behavior, uninit u32's will still successfully be created through mem::uninitialized.
Revert let_chains stabilization
This is the revert against master, the beta revert was already done in #100538.
Bumps the stage0 compiler which already has it reverted.
Rollup of 7 pull requests
Successful merges:
- #100898 (Do not report too many expr field candidates)
- #101056 (Add the syntax of references to their documentation summary.)
- #101106 (Rustdoc-Json: Retain Stripped Modules when they are imported, not when they have items)
- #101131 (CTFE: exposing pointers and calling extern fn is just impossible)
- #101141 (Simplify `get_trait_ref` fn used for `virtual_function_elimination`)
- #101146 (Various changes to logging of borrowck-related code)
- #101156 (Remove `Sync` requirement from lint pass objects)
Failed merges:
r? `@ghost`
`@rustbot` modify labels: rollup
Remove separate indexing of early-bound regions
~Based on https://github.com/rust-lang/rust/pull/99728.~
This PR copies some modifications from https://github.com/rust-lang/rust/pull/97839 around object lifetime defaults.
These modifications allow to stop counting generic parameters during lifetime resolution, and rely on the indexing given by `rustc_typeck::collect`.
sugg: take into count the debug formatting
Closes https://github.com/rust-lang/rust/issues/100648
This PR will fix a suggestion error by taking into consideration also the `:?` symbol and act in a different way
``@rustbot`` r? ``@compiler-errors``
N.B: I did not find a full way to test the change, any idea?
- Rename `ast::Lit::token` as `ast::Lit::token_lit`, because its type is
`token::Lit`, which is not a token. (This has been confusing me for a
long time.)
reasonable because we have an `ast::token::Lit` inside an `ast::Lit`.
- Rename `LitKind::{from,to}_lit_token` as
`LitKind::{from,to}_token_lit`, to match the above change and
`token::Lit`.
Visit attributes in more places.
This adds 3 loosely related changes (I can split PRs if desired):
- Attribute checking on pattern struct fields.
- Attribute checking on struct expression fields.
- Lint level visiting on pattern struct fields, struct expression fields, and generic parameters.
There are still some lints which ignore lint levels in various positions. This is a consequence of how the lints themselves are implemented. For example, lint levels on associated consts don't work with `unused_braces`.
This was incorrectly inserting the ExprField as a sibling of the struct
expression.
This required adjusting various parts which were looking at parent node
of a field expression to find the struct.
This helps simplify the code. It also fixes it to use the correct parent
when lowering. One consequence is the `non_snake_case` lint needed
to change the way it looked for parent nodes in a struct pattern.
This also includes a small fix to use the correct `Target` for
expression field attribute validation.
This extends the LintLevelBuilder to handle lint level attributes on
struct expression fields and pattern fields.
This also updates the early lints to honor lint levels on generic
parameters.