Implement lazy decoding of DefPathTable during incremental compilation
PR https://github.com/rust-lang/rust/pull/75813 implemented lazy decoding of the `DefPathTable` from crate metadata. However, it requires decoding the entire `DefPathTable` when incremental compilation is active, so that we can map a decoded `DefPathHash` to a `DefId` from an arbitrary crate.
This PR adds support for lazy decoding of dependency `DefPathTable`s when incremental compilation si active.
When we load the incremental cache and dep
graph, we need the ability to map a `DefPathHash` to a `DefId` in the
current compilation session (if the corresponding definition still
exists).
This is accomplished by storing the old `DefId` (that is, the `DefId`
from the previous compilation session) for each `DefPathHash` we need to
remap. Since a `DefPathHash` includes the owning crate, the old crate is
guaranteed to be the right one (if the definition still exists). We then
use the old `DefIndex` as an initial guess, which we validate by
comparing the expected and actual `DefPathHash`es. In most cases,
foreign crates will be completely unchanged, which means that we our
guess will be correct. If our guess is wrong, we fall back to decoding
the entire `DefPathTable` for the foreign crate. This still represents
an improvement over the status quo, since we can skip decoding the
entire `DefPathTable` for other crates (where all of our guesses were
correct).
* Reject use of parameters inside naked function body.
* Reject use of patterns inside function parameters, to emphasize role
of parameters a signature declaration (mirroring existing behaviour
for function declarations) and avoid generating code introducing
specified bindings.
Do not remove tokens before AST json serialization
`TokenStripper` is error-prone and introduces one more use of `MutVisitor`.
It's much simpler to treat serialization as just one more place that wants lazy token stream to turn into a real token stream.
Also, no code is better than more code, in general.
r? @Aaron1011
(I also merged tests for `TokenStripper` ICEs into one.)
Implement rustc side of report-future-incompat
cc https://github.com/rust-lang/rust/issues/71249
This is an alternative to `@pnkfelix's` initial implementation in https://github.com/pnkfelix/rust/commits/prototype-rustc-side-of-report-future-incompat (mainly because I started working before seeing that branch 😄 ).
My approach outputs the entire original `Diagnostic`, in a way that is compatible with incremental compilation. This is not yet integrated with compiletest, but can be used manually by passing `-Z emit-future-incompat-report` to `rustc`.
Several changes are made to support this feature:
* The `librustc_session/lint` module is moved to a new crate `librustc_lint_defs` (name bikesheddable). This allows accessing lint definitions from `librustc_errors`.
* The `Lint` struct is extended with an `Option<FutureBreakage>`. When present, it indicates that we should display a lint in the future-compat report. `FutureBreakage` contains additional information that we may want to display in the report (currently, a `date` field indicating when the crate will stop compiling).
* A new variant `rustc_error::Level::Allow` is added. This is used when constructing a diagnostic for a future-breakage lint that is marked as allowed (via `#[allow]` or `--cap-lints`). This allows us to capture any future-breakage diagnostics in one place, while still discarding them before they are passed to the `Emitter`.
* `DiagnosticId::Lint` is extended with a `has_future_breakage` field, indicating whether or not the `Lint` has future breakage information (and should therefore show up in the report).
* `Session` is given access to the `LintStore` via a new `SessionLintStore` trait (since `librustc_session` cannot directly reference `LintStore` without a cyclic dependency). We use this to turn a string `DiagnosticId::Lint` back into a `Lint`, to retrieve the `FutureBreakage` data.
Currently, `FutureBreakage.date` is always set to `None`. However, this could potentially be interpreted by Cargo in the future.
I've enabled the future-breakage report for the `ARRAY_INTO_ITER` lint, which can be used to test out this PR. The intent is to use the field to allow Cargo to determine the date of future breakage (as described in [RFC 2834](https://github.com/rust-lang/rfcs/blob/master/text/2834-cargo-report-future-incompat.md)) without needing to parse the diagnostic itself.
cc `@pnkfelix`
Fixes#75050
Previously, we would unconditionally suppress the panic hook during
proc-macro execution. This commit adds a new flag
-Z proc-macro-backtrace, which allows running the panic hook for
easier debugging.