Add `ConstKind::Expr`
Starting to implement `ty::ConstKind::Abstract`, most of the match cases are stubbed out, some I was unsure what to add, others I didn't want to add until a more complete implementation was ready.
r? `@lcnr`
Initial pass at expr/abstract const/s
Address comments
Switch to using a list instead of &[ty::Const], rm `AbstractConst`
Remove try_unify_abstract_consts
Update comments
Add edits
Recurse more
More edits
Prevent equating associated consts
Move failing test to ui
Changes this test from incremental to ui, and mark it as failing and a known bug.
Does not cause the compiler to ICE, so should be ok.
Make rustc_target usable outside of rustc
I'm working on showing type size in rust-analyzer (https://github.com/rust-lang/rust-analyzer/pull/13490) and I currently copied rustc code inside rust-analyzer, which works, but is bad. With this change, I would become able to use `rustc_target` and `rustc_index` directly in r-a, reducing the amount of copy needed.
This PR contains some feature flag to put nightly features behind them to make crates buildable on the stable compiler + makes layout related types generic over index type + removes interning of nested layouts.
Previously, async constructs would be lowered to "normal" generators,
with an additional `from_generator` / `GenFuture` shim in between to
convert from `Generator` to `Future`.
The compiler will now special-case these generators internally so that
async constructs will *directly* implement `Future` without the need
to go through the `from_generator` / `GenFuture` shim.
The primary motivation for this change was hiding this implementation
detail in stack traces and debuginfo, but it can in theory also help
the optimizer as there is less abstractions to see through.
Support using `Self` or projections inside an RPIT/async fn
I reuse the same idea as https://github.com/rust-lang/rust/pull/103449 to use variances to encode whether a lifetime parameter is captured by impl-trait.
The current implementation of async and RPIT replace all lifetimes from the parent generics by `'static`. This PR changes the scheme
```rust
impl<'a> Foo<'a> {
fn foo<'b, T>() -> impl Into<Self> + 'b { ... }
}
opaque Foo::<'_a>::foo::<'_b, T>::opaque<'b>: Into<Foo<'_a>> + 'b;
impl<'a> Foo<'a> {
// OLD
fn foo<'b, T>() -> Foo::<'static>::foo::<'static, T>::opaque::<'b> { ... }
^^^^^^^ the `Self` becomes `Foo<'static>`
// NEW
fn foo<'b, T>() -> Foo::<'a>::foo::<'b, T>::opaque::<'b> { ... }
^^ the `Self` stays `Foo<'a>`
}
```
There is the same issue with projections. In the example, substitute `Self` by `<T as Trait<'b>>::Assoc` in the sugared version, and `Foo<'_a>` by `<T as Trait<'_b>>::Assoc` in the desugared one.
This allows to support `Self` in impl-trait, since we do not replace lifetimes by `'static` any more. The same trick allows to use projections like `T::Assoc` where `Self` is allowed. The feature is gated behind a `impl_trait_projections` feature gate.
The implementation relies on 2 tweaking rules for opaques in 2 places:
- we only relate substs that correspond to captured lifetimes during TypeRelation;
- we only list captured lifetimes in choice region computation.
For simplicity, I encoded the "capturedness" of lifetimes as a variance, `Bivariant` vs `Invariant` for unused vs captured lifetimes. The `variances_of` query used to ICE for opaques.
Impl-trait that do not reference `Self` or projections will have their variances as:
- `o` (invariant) for each parent type or const;
- `*` (bivariant) for each parent lifetime --> will not participate in borrowck;
- `o` (invariant) for each own lifetime.
Impl-trait that does reference `Self` and/or projections will have some parent lifetimes marked as `o` (as the example above), and participate in type relation and borrowck. In the example above, `variances_of(opaque) = ['_a: o, '_b: *, T: o, 'b: o]`.
r? types
cc `@compiler-errors` , as you asked about the issue with `Self` and projections.
Accept `TyCtxt` instead of `TyCtxtAt` in `Ty::is_*` functions
Functions in answer:
- `Ty::is_freeze`
- `Ty::is_sized`
- `Ty::is_unpin`
- `Ty::is_copy_modulo_regions`
This allows to remove a lot of useless `.at(DUMMY_SP)`, making the code a bit nicer :3
r? `@compiler-errors`
spastorino noticed some silly expressions like `item_id.def_id.def_id`.
This commit renames several `def_id: OwnerId` fields as `owner_id`, so
those expressions become `item_id.owner_id.def_id`.
`item_id.owner_id.local_def_id` would be even clearer, but the use of
`def_id` for values of type `LocalDefId` is *very* widespread, so I left
that alone.
indirect immutable freeze by-value function parameters.
Right now, `rustc` only examines function signatures and the platform ABI when
determining the LLVM attributes to apply to parameters. This results in missed
optimizations, because there are some attributes that can be determined via
analysis of the MIR making up the function body. In particular, `readonly`
could be applied to most indirectly-passed by-value function arguments
(specifically, those that are freeze and are observed not to be mutated), but
it currently is not.
This patch introduces the machinery that allows `rustc` to determine those
attributes. It consists of a query, `deduced_param_attrs`, that, when
evaluated, analyzes the MIR of the function to determine supplementary
attributes. The results of this query for each function are written into the
crate metadata so that the deduced parameter attributes can be applied to
cross-crate functions. In this patch, we simply check the parameter for
mutations to determine whether the `readonly` attribute should be applied to
parameters that are indirect immutable freeze by-value. More attributes could
conceivably be deduced in the future: `nocapture` and `noalias` come to mind.
Adding `readonly` to indirect function parameters where applicable enables some
potential optimizations in LLVM that are discussed in [issue 103103] and [PR
103070] around avoiding stack-to-stack memory copies that appear in functions
like `core::fmt::Write::write_fmt` and `core::panicking::assert_failed`. These
functions pass a large structure unchanged by value to a subfunction that also
doesn't mutate it. Since the structure in this case is passed as an indirect
parameter, it's a pointer from LLVM's perspective. As a result, the
intermediate copy of the structure that our codegen emits could be optimized
away by LLVM's MemCpyOptimizer if it knew that the pointer is `readonly
nocapture noalias` in both the caller and callee. We already pass `nocapture
noalias`, but we're missing `readonly`, as we can't determine whether a
by-value parameter is mutated by examining the signature in Rust. I didn't have
much success with having LLVM infer the `readonly` attribute, even with fat
LTO; it seems that deducing it at the MIR level is necessary.
No large benefits should be expected from this optimization *now*; LLVM needs
some changes (discussed in [PR 103070]) to more aggressively use the `noalias
nocapture readonly` combination in its alias analysis. I have some LLVM patches
for these optimizations and have had them looked over. With all the patches
applied locally, I enabled LLVM to remove all the `memcpy`s from the following
code:
```rust
fn main() {
println!("Hello {}", 3);
}
```
which is a significant codegen improvement over the status quo. I expect that
if this optimization kicks in in multiple places even for such a simple
program, then it will apply to Rust code all over the place.
[issue 103103]: https://github.com/rust-lang/rust/issues/103103
[PR 103070]: https://github.com/rust-lang/rust/pull/103070
Unify `tcx.constness` query and param env constness checks
The checks that we do in the `constness` query seem inconsistent with the checks that we do to determine if an item's param-env is const, so I merged them into the `constness` query and call that from the `param_env` query.
I'm not sure if this totally makes sense -- is there a case where `tcx.param_env()` would return a const param-env for an item whose `tcx.constness()` is `Constness::NotConst`? Because if not, it seems a bit dangerous that these two differ.
Luckily, not many places actually use `tcx.constness()`, and the checks in `tcx.param_env()` seem stricter than the checks in `tcx.constness()` (at least for the types of items we type-check).
Also, due to the way that `tcx.param_env()` is implemented, it _never_ used to return a const param-env for a item coming from a different crate, which also seems dangerous (though also probably not weaponizable currently, because we seldom actually compute the param-env for a non-local item).
rename `ImplItemKind::TyAlias` to `ImplItemKind::Type`
The naming of this variant seems inconsistent given that this is not really a "type alias", and the associated type variant for `TraitItemKind` is just called `Type`.
Rewrite representability
* Improve placement of `Box` in the suggestion
* Multiple items in a cycle emit 1 error instead of an error for each item in the cycle
* Introduce `representability` query to avoid traversing an item every time it is used.
* Also introduce `params_in_repr` query to avoid traversing generic items every time it is used.
make `compare_const_impl` a query and use it in `instance.rs`
Fixes#88365
the bug in #88365 was caused by some `instance.rs` code using the `PartialEq` impl on `Ty` to check that the type of the associated const in an impl is the same as the type of the associated const in the trait definition. This was wrong for two reasons:
- the check typeck does is that the impl type is a subtype of the trait definition's type (see `mismatched_impl_ty_2.rs` which [was ICEing](https://play.rust-lang.org/?version=stable&mode=debug&edition=2021&gist=f6d60ebe6745011f0d52ab2bc712025d) before this PR on stable)
- it assumes that if two types are equal then the `PartialEq` impl will reflect that which isnt true for higher ranked types or type level constants when `feature(generic_const_exprs)` is enabled (see `mismatched_impl_ty_3.rs` for higher ranked types which was [ICEing on stable](https://play.rust-lang.org/?version=stable&mode=debug&edition=2021&gist=d7af131a655ed515b035624626c62c71))
r? `@lcnr`
fix a ui test
use `into`
fix clippy ui test
fix a run-make-fulldeps test
implement `IntoQueryParam<DefId>` for `OwnerId`
use `OwnerId` for more queries
change the type of `ParentOwnerIterator::Item` to `(OwnerId, OwnerNode)`
On later stages, the feature is already stable.
Result of running:
rg -l "feature.let_else" compiler/ src/librustdoc/ library/ | xargs sed -s -i "s#\\[feature.let_else#\\[cfg_attr\\(bootstrap, feature\\(let_else\\)#"
`thir::Pat::kind` is a `Box<PatKind>`, which doesn't follow the usual
pattern in AST/HIR/THIR which is that the "kind" enum for a node is
stored inline within the parent struct.
This commit makes the `PatKind` directly inline within the `Pat`. This
requires using `Box<Pat>` in all the types that hold a `Pat.
Ideally, `Pat` would be stored in `Thir` like `Expr` and `Stmt` and
referred to with a `PatId` rather than `Box<Pat>`. But this is hard to
do because lots of `Pat`s get created after the destruction of the `Cx`
that does normal THIR building. But this does get us a step closer to
`PatId`, because all the `Box<Pat>` occurrences would be replaced with
`PatId` if `PatId` ever happened.
At 128 bytes, `Pat` is large. Subsequent commits will shrink it.
Replace `Body::basic_blocks()` with field access
Since the refactoring in #98930, it is possible to borrow the basic blocks
independently from other parts of MIR by accessing the `basic_blocks` field
directly.
Replace unnecessary `Body::basic_blocks()` method with a direct field access,
which has an additional benefit of borrowing the basic blocks only.
Move abstract const to middle
Moves AbstractConst (and all associated methods) to rustc middle for use in `rustc_infer`.
This allows for const resolution in infer to use abstract consts to walk consts and check if
they are resolvable.
This attempts to resolve the issue where `Foo<{ concrete const }, generic T>` is incorrectly marked as conflicting, and is independent from the other issue where nested abstract consts must be resolved.
r? `@lcnr`
Handle `def_ident_span` like `def_span`.
`def_ident_span` had an ad-hoc status in the compiler.
This PR refactors it to be a first-class citizen like `def_span`:
- it gets encoded in the main metadata loop, instead of the visitor;
- its implementation is updated to mirror the one of `def_span`.
We do not remove the `Option` in the return type, since some items do not have an ident, AnonConsts for instance.
Remove unwrap from get_vtable
This avoids ICE on issue #97381 I think the bug is a bit deeper though, it compiles fine when `v` is `&v` which makes me think `Deref` is causing some issue with borrowck but it's fine I guess since this thing crashes since `nightly-2020-09-17` 😅
This commit makes type folding more like the way chalk does it.
Currently, `TypeFoldable` has `fold_with` and `super_fold_with` methods.
- `fold_with` is the standard entry point, and defaults to calling
`super_fold_with`.
- `super_fold_with` does the actual work of traversing a type.
- For a few types of interest (`Ty`, `Region`, etc.) `fold_with` instead
calls into a `TypeFolder`, which can then call back into
`super_fold_with`.
With the new approach, `TypeFoldable` has `fold_with` and
`TypeSuperFoldable` has `super_fold_with`.
- `fold_with` is still the standard entry point, *and* it does the
actual work of traversing a type, for all types except types of
interest.
- `super_fold_with` is only implemented for the types of interest.
Benefits of the new model.
- I find it easier to understand. The distinction between types of
interest and other types is clearer, and `super_fold_with` doesn't
exist for most types.
- With the current model is easy to get confused and implement a
`super_fold_with` method that should be left defaulted. (Some of the
precursor commits fixed such cases.)
- With the current model it's easy to call `super_fold_with` within
`TypeFolder` impls where `fold_with` should be called. The new
approach makes this mistake impossible, and this commit fixes a number
of such cases.
- It's potentially faster, because it avoids the `fold_with` ->
`super_fold_with` call in all cases except types of interest. A lot of
the time the compile would inline those away, but not necessarily
always.
Replace `#[default_method_body_is_const]` with `#[const_trait]`
pulled out of #96077
related issues: #67792 and #92158
cc `@fee1-dead`
This is groundwork to only allowing `impl const Trait` for traits that are marked with `#[const_trait]`. This is necessary to prevent adding a new default method from becoming a breaking change (as it could be a non-const fn).
Add a query for checking whether a function is an intrinsic.
work towards #93145
This will reduce churn when we add more ways to declare intrinsics
r? `@scottmcm`
Add EarlyBinder
Chalk has no concept of `Param` (e0ade19d13/chalk-ir/src/lib.rs (L579)) or `ReEarlyBound` (e0ade19d13/chalk-ir/src/lib.rs (L1308)). Everything is just "bound" - the equivalent of rustc's late-bound. It's not completely clear yet whether to move everything to the same time of binder in rustc or add `Param` and `ReEarlyBound` in Chalk.
Either way, tracking when we have or haven't already substituted out these in rustc can be helpful.
As a first step, I'm just adding a `EarlyBinder` newtype that is required to call `subst`. I also add a couple "transparent" `bound_*` wrappers around a couple query that are often immediately substituted.
r? `@nikomatsakis`
There are a few places were we have to construct it, though, and a few
places that are more invasive to change. To do this, we create a
constructor with a long obvious name.
This commit makes `AdtDef` use `Interned`. Much the commit is tedious
changes to introduce getter functions. The interesting changes are in
`compiler/rustc_middle/src/ty/adt.rs`.
Overly aggressive use of the query system to improve caching lead to query cycles and consequently
ICEs. This patch fixes this by restricting the use of the query system as a cache to those cases
where it is definitely correct.
Specifically, change `Region` from this:
```
pub type Region<'tcx> = &'tcx RegionKind;
```
to this:
```
pub struct Region<'tcx>(&'tcx Interned<RegionKind>);
```
This now matches `Ty` and `Predicate` more closely.
Things to note
- Regions have always been interned, but we haven't been using pointer-based
`Eq` and `Hash`. This is now happening.
- I chose to impl `Deref` for `Region` because it makes pattern matching a lot
nicer, and `Region` can be viewed as just a smart wrapper for `RegionKind`.
- Various methods are moved from `RegionKind` to `Region`.
- There is a lot of tedious sigil changes.
- A couple of types like `HighlightBuilder`, `RegionHighlightMode` now have a
`'tcx` lifetime because they hold a `Ty<'tcx>`, so they can call `mk_region`.
- A couple of test outputs change slightly, I'm not sure why, but the new
outputs are a little better.
Specifically, change `Ty` from this:
```
pub type Ty<'tcx> = &'tcx TyS<'tcx>;
```
to this
```
pub struct Ty<'tcx>(Interned<'tcx, TyS<'tcx>>);
```
There are two benefits to this.
- It's now a first class type, so we can define methods on it. This
means we can move a lot of methods away from `TyS`, leaving `TyS` as a
barely-used type, which is appropriate given that it's not meant to
be used directly.
- The uniqueness requirement is now explicit, via the `Interned` type.
E.g. the pointer-based `Eq` and `Hash` comes from `Interned`, rather
than via `TyS`, which wasn't obvious at all.
Much of this commit is boring churn. The interesting changes are in
these files:
- compiler/rustc_middle/src/arena.rs
- compiler/rustc_middle/src/mir/visit.rs
- compiler/rustc_middle/src/ty/context.rs
- compiler/rustc_middle/src/ty/mod.rs
Specifically:
- Most mentions of `TyS` are removed. It's very much a dumb struct now;
`Ty` has all the smarts.
- `TyS` now has `crate` visibility instead of `pub`.
- `TyS::make_for_test` is removed in favour of the static `BOOL_TY`,
which just works better with the new structure.
- The `Eq`/`Ord`/`Hash` impls are removed from `TyS`. `Interned`s impls
of `Eq`/`Hash` now suffice. `Ord` is now partly on `Interned`
(pointer-based, for the `Equal` case) and partly on `TyS`
(contents-based, for the other cases).
- There are many tedious sigil adjustments, i.e. adding or removing `*`
or `&`. They seem to be unavoidable.
This is the same idea as #92533, but for `AssocItem` instead
of `VariantDef`/`FieldDef`.
With this change, we no longer have any uses of
`#[stable_hasher(project(...))]`
Cleanup: Eliminate ConstnessAnd
This is almost a behaviour-free change and purely a refactoring. "almost" because we appear to be using the wrong ParamEnv somewhere already, and this is now exposed by failing a test using the unstable `~const` feature.
We most definitely need to review all `without_const` and at some point should probably get rid of many of them by using `TraitPredicate` instead of `TraitRef`.
This is a continuation of https://github.com/rust-lang/rust/pull/90274.
r? `@oli-obk`
cc `@spastorino` `@ecstatic-morse`
Fixes incorrect handling of ADT's drop requirements
Fixes#90024 and a bunch of duplicates.
The main issue was just that the contract of `NeedsDropTypes::adt_components` was inconsistent; the list of types it might return were the generic parameters themselves or the fields of the ADT, depending on the nature of the drop impl. This meant that the caller could not determine whether a `.subst()` call was still needed on those types; it called `.subst()` in all cases, and this led to ICEs when the returned types were the generic params.
First contribution of more than a few lines, so feedback definitely appreciated.
Migrate in-tree crates to 2021
This replaces #89075 (cherry picking some of the commits from there), and closes#88637 and fixes#89074.
It excludes a migration of the library crates for now (see tidy diff) because we have some pending bugs around macro spans to fix there.
I instrumented bootstrap during the migration to make sure all crates moved from 2018 to 2021 had the compatibility warnings applied first.
Originally, the intent was to support cargo fix --edition within bootstrap, but this proved fairly difficult to pull off. We'd need to architect the check functionality to support running cargo check and cargo fix within the same x.py invocation, and only resetting sysroots on check. Further, it was found that cargo fix doesn't behave too well with "not quite workspaces", such as Clippy which has several crates. Bootstrap runs with --manifest-path ... for all the tools, and this makes cargo fix only attempt migration for that crate. We can't use e.g. --workspace due to needing to maintain sysroots for different phases of compilation appropriately.
It is recommended to skip the mass migration of Cargo.toml's to 2021 for review purposes; you can also use `git diff d6cd2c6c87 -I'^edition = .20...$'` to ignore the edition = 2018/21 lines in the diff.
Since RFC 3052 soft deprecated the authors field anyway, hiding it from
crates.io, docs.rs, and making Cargo not add it by default, and it is
not generally up to date/useful information, we should remove it from
crates in this repo.
For example, drop glue generated for struct below, doesn't have any
statements, only terminators. Previously it received an estimate of 0,
the new estimate is 13 (6+5 drop terminators, +1 resume, +1 return).
struct S {
a: String,
b: String,
c: String,
d: String,
e: String,
f: String,
}
Originally reported in https://github.com/rust-lang/rust/issues/69382#issue-569392141
Such structures may contain self-references, in which case the
same location may be accessible through a pointer that is not
based-on the noalias pointer.
This is still grey area as far as language semantics are concerned,
but checking for !Unpin as an indicator for self-referential
sturctures seems like a good approach for the meantime.
Implement RFC 2580: Pointer metadata & VTable
RFC: https://github.com/rust-lang/rfcs/pull/2580
~~Before merging this PR:~~
* [x] Wait for the end of the RFC’s [FCP to merge](https://github.com/rust-lang/rfcs/pull/2580#issuecomment-759145278).
* [x] Open a tracking issue: https://github.com/rust-lang/rust/issues/81513
* [x] Update `#[unstable]` attributes in the PR with the tracking issue number
----
This PR extends the language with a new lang item for the `Pointee` trait which is special-cased in trait resolution to implement it for all types. Even in generic contexts, parameters can be assumed to implement it without a corresponding bound.
For this I mostly imitated what the compiler was already doing for the `DiscriminantKind` trait. I’m very unfamiliar with compiler internals, so careful review is appreciated.
This PR also extends the standard library with new unstable APIs in `core::ptr` and `std::ptr`:
```rust
pub trait Pointee {
/// One of `()`, `usize`, or `DynMetadata<dyn SomeTrait>`
type Metadata: Copy + Send + Sync + Ord + Hash + Unpin;
}
pub trait Thin = Pointee<Metadata = ()>;
pub const fn metadata<T: ?Sized>(ptr: *const T) -> <T as Pointee>::Metadata {}
pub const fn from_raw_parts<T: ?Sized>(*const (), <T as Pointee>::Metadata) -> *const T {}
pub const fn from_raw_parts_mut<T: ?Sized>(*mut (),<T as Pointee>::Metadata) -> *mut T {}
impl<T: ?Sized> NonNull<T> {
pub const fn from_raw_parts(NonNull<()>, <T as Pointee>::Metadata) -> NonNull<T> {}
/// Convenience for `(ptr.cast(), metadata(ptr))`
pub const fn to_raw_parts(self) -> (NonNull<()>, <T as Pointee>::Metadata) {}
}
impl<T: ?Sized> *const T {
pub const fn to_raw_parts(self) -> (*const (), <T as Pointee>::Metadata) {}
}
impl<T: ?Sized> *mut T {
pub const fn to_raw_parts(self) -> (*mut (), <T as Pointee>::Metadata) {}
}
/// `<dyn SomeTrait as Pointee>::Metadata == DynMetadata<dyn SomeTrait>`
pub struct DynMetadata<Dyn: ?Sized> {
// Private pointer to vtable
}
impl<Dyn: ?Sized> DynMetadata<Dyn> {
pub fn size_of(self) -> usize {}
pub fn align_of(self) -> usize {}
pub fn layout(self) -> crate::alloc::Layout {}
}
unsafe impl<Dyn: ?Sized> Send for DynMetadata<Dyn> {}
unsafe impl<Dyn: ?Sized> Sync for DynMetadata<Dyn> {}
impl<Dyn: ?Sized> Debug for DynMetadata<Dyn> {}
impl<Dyn: ?Sized> Unpin for DynMetadata<Dyn> {}
impl<Dyn: ?Sized> Copy for DynMetadata<Dyn> {}
impl<Dyn: ?Sized> Clone for DynMetadata<Dyn> {}
impl<Dyn: ?Sized> Eq for DynMetadata<Dyn> {}
impl<Dyn: ?Sized> PartialEq for DynMetadata<Dyn> {}
impl<Dyn: ?Sized> Ord for DynMetadata<Dyn> {}
impl<Dyn: ?Sized> PartialOrd for DynMetadata<Dyn> {}
impl<Dyn: ?Sized> Hash for DynMetadata<Dyn> {}
```
API differences from the RFC, in areas noted as unresolved questions in the RFC:
* Module-level functions instead of associated `from_raw_parts` functions on `*const T` and `*mut T`, following the precedent of `null`, `slice_from_raw_parts`, etc.
* Added `to_raw_parts`
Only store a LocalDefId in some HIR nodes
Some HIR nodes are guaranteed to be HIR owners: Item, TraitItem, ImplItem, ForeignItem and MacroDef.
As a consequence, we do not need to store the `HirId`'s `local_id`, and we can directly store a `LocalDefId`.
This allows to avoid a bit of the dance with `tcx.hir().local_def_id` and `tcx.hir().local_def_id_to_hir_id` mappings.
Rework diagnostics for wrong number of generic args (fixes#66228 and #71924)
This PR reworks the `wrong number of {} arguments` message, so that it provides more details and contextual hints.
This makes it possible to pass the `Impl` directly to functions, instead
of having to pass each of the many fields one at a time. It also
simplifies matches in many cases.