Move `#[do_not_recommend]` to the `#[diagnostic]` namespace
This commit moves the `#[do_not_recommend]` attribute to the `#[diagnostic]` namespace. It still requires
`#![feature(do_not_recommend)]` to work.
r? `@compiler-errors`
This commit adds a new nonterminal `expr_2021` in macro patterns, and
`expr_fragment_specifier_2024` feature flag. For now, `expr` and
`expr_2021` are treated the same, but in future PRs we will update
`expr` to match to new grammar.
Co-authored-by: Vincezo Palazzo <vincenzopalazzodev@gmail.com>
Change `SIGPIPE` ui from `#[unix_sigpipe = "..."]` to `-Zon-broken-pipe=...`
In the stabilization [attempt](https://github.com/rust-lang/rust/pull/120832) of `#[unix_sigpipe = "sig_dfl"]`, a concern was [raised ](https://github.com/rust-lang/rust/pull/120832#issuecomment-2007394609) related to using a language attribute for the feature: Long term, we want `fn lang_start()` to be definable by any crate, not just libstd. Having a special language attribute in that case becomes awkward.
So as a first step towards the next stabilization attempt, this PR changes the `#[unix_sigpipe = "..."]` attribute to a compiler flag `-Zon-broken-pipe=...` to remove that concern, since now the language is not "contaminated" by this feature.
Another point was [also raised](https://github.com/rust-lang/rust/pull/120832#issuecomment-1987023484), namely that the ui should not leak **how** it does things, but rather what the **end effect** is. The new flag uses the proposed naming. This is of course something that can be iterated on further before stabilization.
Tracking issue: https://github.com/rust-lang/rust/issues/97889
In the stabilization attempt of `#[unix_sigpipe = "sig_dfl"]`, a concern
was raised related to using a language attribute for the feature: Long
term, we want `fn lang_start()` to be definable by any crate, not just
libstd. Having a special language attribute in that case becomes
awkward.
So as a first step towards towards the next stabilization attempt, this
PR changes the `#[unix_sigpipe = "..."]` attribute to a compiler flag
`-Zon-broken-pipe=...` to remove that concern, since now the language
is not "contaminated" by this feature.
Another point was also raised, namely that the ui should not leak
**how** it does things, but rather what the **end effect** is. The new
flag uses the proposed naming. This is of course something that can be
iterated on further before stabilization.
`-Z debug-macros` is "stabilized" by enabling it by default and removing.
`-Z collapse-macro-debuginfo` is stabilized as `-C collapse-macro-debuginfo`.
It now supports all typical boolean values (`parse_opt_bool`) in addition to just yes/no.
Default value of `collapse_debuginfo` was changed from `false` to `external` (i.e. collapsed if external, not collapsed if local).
`#[collapse_debuginfo]` attribute without a value is no longer supported to avoid guessing the default.
weak lang items are not allowed to be #[track_caller]
For instance the panic handler will be called via this import
```rust
extern "Rust" {
#[lang = "panic_impl"]
fn panic_impl(pi: &PanicInfo<'_>) -> !;
}
```
A `#[track_caller]` would add an extra argument and thus make this the wrong signature.
The 2nd commit is a consistency rename; based on the docs [here](https://doc.rust-lang.org/unstable-book/language-features/lang-items.html) and [here](https://rustc-dev-guide.rust-lang.org/lang-items.html) I figured "lang item" is more widely used. (In the compiler output, "lang item" and "language item" seem to be pretty even.)
Implement minimal, internal-only pattern types in the type system
rebase of https://github.com/rust-lang/rust/pull/107606
You can create pattern types with `std::pat::pattern_type!(ty is pat)`. The feature is incomplete and will panic on you if you use any pattern other than integral range patterns. The only way to create or deconstruct a pattern type is via `transmute`.
This PR's implementation differs from the MCP's text. Specifically
> This means you could implement different traits for different pattern types with the same base type. Thus, we just forbid implementing any traits for pattern types.
is violated in this PR. The reason is that we do need impls after all in order to make them usable as fields. constants of type `std::time::Nanoseconds` struct are used in patterns, so the type must be structural-eq, which it only can be if you derive several traits on it. It doesn't need to be structural-eq recursively, so we can just manually implement the relevant traits on the pattern type and use the pattern type as a private field.
Waiting on:
* [x] move all unrelated commits into their own PRs.
* [x] fix niche computation (see 2db07f94f44f078daffe5823680d07d4fded883f)
* [x] add lots more tests
* [x] T-types MCP https://github.com/rust-lang/types-team/issues/126 to finish
* [x] some commit cleanup
* [x] full self-review
* [x] remove 61bd325da19a918cc3e02bbbdce97281a389c648, it's not necessary anymore I think.
* [ ] ~~make sure we never accidentally leak pattern types to user code (add stability checks or feature gate checks and appopriate tests)~~ we don't even do this for the new float primitives
* [x] get approval that [the scope expansion to trait impls](https://rust-lang.zulipchat.com/#narrow/stream/326866-t-types.2Fnominated/topic/Pattern.20types.20types-team.23126/near/427670099) is ok
r? `@BoxyUwU`
The original proposal allows reference patterns
with "compatible" mutability, however it's not clear
what that means so for now we require an exact match.
I don't know the type system code well, so if something
seems to not make sense it's probably because I made a
mistake
Match ergonomics 2024: implement mutable by-reference bindings
Implements the mutable by-reference bindings portion of match ergonomics 2024 (#123076), with the `mut ref`/`mut ref mut` syntax, under feature gate `mut_ref`.
r? `@Nadrieril`
`@rustbot` label A-patterns A-edition-2024
Experimental feature postfix match
This has a basic experimental implementation for the RFC postfix match (rust-lang/rfcs#3295, #121618). [Liaison is](https://rust-lang.zulipchat.com/#narrow/stream/213817-t-lang/topic/Postfix.20Match.20Liaison/near/423301844) ```@scottmcm``` with the lang team's [experimental feature gate process](https://github.com/rust-lang/lang-team/blob/master/src/how_to/experiment.md).
This feature has had an RFC for a while, and there has been discussion on it for a while. It would probably be valuable to see it out in the field rather than continue discussing it. This feature also allows to see how popular postfix expressions like this are for the postfix macros RFC, as those will take more time to implement.
It is entirely implemented in the parser, so it should be relatively easy to remove if needed.
This PR is split in to 5 commits to ease review.
1. The implementation of the feature & gating.
2. Add a MatchKind field, fix uses, fix pretty.
3. Basic rustfmt impl, as rustfmt crashes upon seeing this syntax without a fix.
4. Add new MatchSource to HIR for Clippy & other HIR consumers
Add a never type option to make diverging blocks `()`
More experiments for ~~the blood god~~ T-lang!
Usage example:
```rust
#![allow(internal_features)]
#![feature(never_type, rustc_attrs)]
#![rustc_never_type_options(diverging_block_default = "unit")]
fn main() {
let _: u8 = { //~ error: expected `u8`, found `()`
return;
};
}
```
r? compiler-errors
I'm not sure how I feel about parsing the attribute every time we create `FnCtxt`. There must be a better way to do this, right?
Stabilize associated type bounds (RFC 2289)
This PR stabilizes associated type bounds, which were laid out in [RFC 2289]. This gives us a shorthand to express nested type bounds that would otherwise need to be expressed with nested `impl Trait` or broken into several `where` clauses.
### What are we stabilizing?
We're stabilizing the associated item bounds syntax, which allows us to put bounds in associated type position within other bounds, i.e. `T: Trait<Assoc: Bounds...>`. See [RFC 2289] for motivation.
In all position, the associated type bound syntax expands into a set of two (or more) bounds, and never anything else (see "How does this differ[...]" section for more info).
Associated type bounds are stabilized in four positions:
* **`where` clauses (and APIT)** - This is equivalent to breaking up the bound into two (or more) `where` clauses. For example, `where T: Trait<Assoc: Bound>` is equivalent to `where T: Trait, <T as Trait>::Assoc: Bound`.
* **Supertraits** - Similar to above, `trait CopyIterator: Iterator<Item: Copy> {}`. This is almost equivalent to breaking up the bound into two (or more) `where` clauses; however, the bound on the associated item is implied whenever the trait is used. See #112573/#112629.
* **Associated type item bounds** - This allows constraining the *nested* rigid projections that are associated with a trait's associated types. e.g. `trait Trait { type Assoc: Trait2<Assoc2: Copy>; }`.
* **opaque item bounds (RPIT, TAIT)** - This allows constraining associated types that are associated with the opaque without having to *name* the opaque. For example, `impl Iterator<Item: Copy>` defines an iterator whose item is `Copy` without having to actually name that item bound.
The latter three are not expressible in surface Rust (though for associated type item bounds, this will change in #120752, which I don't believe should block this PR), so this does represent a slight expansion of what can be expressed in trait bounds.
### How does this differ from the RFC?
Compared to the RFC, the current implementation *always* desugars associated type bounds to sets of `ty::Clause`s internally. Specifically, it does *not* introduce a position-dependent desugaring as laid out in [RFC 2289], and in particular:
* It does *not* desugar to anonymous associated items in associated type item bounds.
* It does *not* desugar to nested RPITs in RPIT bounds, nor nested TAITs in TAIT bounds.
This position-dependent desugaring laid out in the RFC existed simply to side-step limitations of the trait solver, which have mostly been fixed in #120584. The desugaring laid out in the RFC also added unnecessary complication to the design of the feature, and introduces its own limitations to, for example:
* Conditionally lowering to nested `impl Trait` in certain positions such as RPIT and TAIT means that we inherit the limitations of RPIT/TAIT, namely lack of support for higher-ranked opaque inference. See this code example: https://github.com/rust-lang/rust/pull/120752#issuecomment-1979412531.
* Introducing anonymous associated types makes traits no longer object safe, since anonymous associated types are not nameable, and all associated types must be named in `dyn` types.
This last point motivates why this PR is *not* stabilizing support for associated type bounds in `dyn` types, e.g, `dyn Assoc<Item: Bound>`. Why? Because `dyn` types need to have *concrete* types for all associated items, this would necessitate a distinct lowering for associated type bounds, which seems both complicated and unnecessary compared to just requiring the user to write `impl Trait` themselves. See #120719.
### Implementation history:
Limited to the significant behavioral changes and fixes and relevant PRs, ping me if I left something out--
* #57428
* #108063
* #110512
* #112629
* #120719
* #120584Closes#52662
[RFC 2289]: https://rust-lang.github.io/rfcs/2289-associated-type-bounds.html